Blade Columns – An EC2 Discussion

Eurocode 2 – "Method A"

Method A overview

 $R = 120 ((R_{\eta fi} + R_a + R_l + R_b + R_n)/120)^{1.8}$

Number of rebars term

• 2 approaches:

- Use of Equation 5.7 (developed^{term} by Liege based on best-fit correlations with test data)
- Tabulated data created by using Eq. 7.5 with specific generic assumptions.

Column length term Cross section size term

 Table 5.2a: Minimum column dimensions and axis distances for columns with rectangular or circular section

Standard fire	Minimum dimensions (mm) Column width b _{min} /axis distance a of the main bars						
resistance	Column ex	Exposed on one side					
	$\mu_{\rm fi} = 0.2$	$\mu_{\rm fi} = 0.5$	$\mu_{\rm fi} = 0.7$	$\mu_{\rm fi} = 0.7$			
1	2	3	4	5			
R 30	200/25	200/25	200/32 300/27	155/25			
R 60	200/25	200/36 300/31	250/46 350/40	155/25			
R 90	200/31 300/25	300/45 400/38	350/53 450/40**	155/25			
R 120	250/40 350/35	350/45** 450/40**	350/57** 450/51**	175/35			
R 180	350/45**	350/63**	450/70**	230/55			
R 240	350/61**	450/75**	-	295/70			
**							

Minimum 8 bars

Rebar cover

Load ratio

term

 $[\ensuremath{\mathbb{A}}\xspace{1}\xspac$

EC2 limitations

- Effective Length: $2m < l_{o,fi} < 6m$
- Axis distance: 25mm< a< 80mm
- Effective breadth: 250mm < b' < 450mm
- Height: h< 1.5b

First International Workshop « Structures in Fire » - Copenhagen - June 2000

DESIGN OF CONCRETE COLUMNS BASED ON EC2 TABULATED DATA - A CRITICAL REVIEW

Jean-Marc FRANSSEN Univ. of Liege, 1, Chemin des Chevreuils, 4000, Liège 1, Belgium jm.franssen@ulg.ac.be

Load level Dimensions of the section

Concrete cover Length of the column

Reinforcement ratio Concrete strength Eccentricity Diameter of the bars

 $0.9 \% \le A_s/A_c \le 4.0 \%$ $24 \le f_{cm} \le 53 \text{ MPa}$ $e \le 15 \text{ cm}$ $\phi < 25 \text{ mm}$

ARUP

Results of original study

FIGURE 7 : Comparison between new model and tests

FIGURE 9 : R_f(model) / R_f(test) as a function of b '

DESIGN OF CONCRETE COLUMNS BASED ON EC2 TABULATED DATA - A CRITICAL REVIEW

Jean-Marc FRANSSEN Univ. of Liege, 1, Chemin des Chevreuils, 4000, Liège 1, Belgium jm.franssen@ulg.ac.be

FIGURE 8 : R_f (model) / R_f (test) as a function of v_{fi}

FIGURE 12 : Rf(model) / Rf(test) as a function of L

ARUP

New Liege Study

Aspect ratio h/b	b [mm]	h [mm]	Quant. of bars	Diam. (mm)	As [mm²]	Ac [mm²]	As / Ac	Axis distance [mm]
1	250	250	4	14	615.75	61884	0.0100	35
1.5	250	375	6	14	923.63	92826	0.0100	35
2	250	500	8	14	1231.5	123768	0.0100	35
2.5	250	625	10	14	1539.4	154711	0.0100	35
3	250	750	12	14	1847.3	185653	0.0100	35
3.5	250	875	14	14	2155.1	216595	0.0100	35
4	250	1000	16	14	2463	247537	0.0100	35
5	250	1250	20	14	3078.8	309421	0.0100	35

Table 1- Cross-sections considered in the study

- Load ratios between 0.085 and 1.046
- Column capacity determined by SAFIR models
- Capacities determined using ambient material partial factors for concrete and steel.

New Liege study Results

- Increasing aspect ratio does not significantly affect failure mechanism
- <u>Large proportion of results in this particular study are</u> <u>unconservative</u>
 - (up to 80% difference)

Figure 4 – Comparison between results obtained with SAFIR© and with Eq. 5.7 for the different aspect ratios – maximum eccentricity applied (e = 37.5mm)

Conclusions

- Method A can be used for Blade columns
- Method A accuracy in line with other types of construction
- Column tests are particularly difficult to characterise
- Results in large degree of variability
- Need Blade column tests for verification
- How can we get a better column test?

