

Tensile Membrane Action of Composite Slabs in Fire

Are the current methods really OK?

lan Burgess University of Sheffield, UK

Cardington

Max beam temperature ~1150°C cf. Code critical temperature ~ 680°C

The basis of all current simplified methods: Hayes (1968)

Small-deflection yield-line mechanism – slab only

<u>Criterion:</u> Cracks from intersection. Moment equilibrium about E. Finds *b* and *k*. <u>Rationale:</u> Superposition of rebar tension and concrete compression force/unit length.

Partial enhancement factors – both cases - Hayes

Bending "enhancements" - Hayes

Wood's equation for reduction of moment capacity of a rectangular RC crosssection due to axial compression:

1. Long-span reinforcement:
$$\frac{M}{M_0} = 1 + A \frac{N}{T_0} B \frac{N}{T_0}^2 - \frac{T_0}{T_0} - \frac{T_0}{T_0}$$

These are integrated in x- and y- directions respectively for the bending moments across the yield lines for Portions 1 and 2.

Forming an overall enhancement factor - Hayes

These are nearly always unequal (WHY?). Put together as

Overall enhancement factor

$$e = e_1 - \frac{e_1 - e_2}{1 + 2\mu a^2}$$

These don't include any vertical shear between the facets. If these are included there is only one enhancement factor. (Tony Gillies 2015)

New enhancement Factor equivalent to

$$e = e_1 - \frac{e_1 - e_2}{1 + 2\mu na^2}$$

- The membrane traction distribution is an <u>assumption</u>.
 It corresponds to unfractured mesh and either:
 - No through-depth cracks along yield lines.
 - Partial through-depth cracks along yield lines.
- Both of these distributions apply only to the case where a lateral through-depth crack has formed across the short span through the YL intersection.
- Distribution is fixed for each case. Enhancement factor starts below 1.0 – actually at zero.
- Internal forces don't depend on deflection.

Structural fire resistance methods for composite floors

Typical design strategy for TMA

- Protect members on column gridlines.
- Leave intermediate secondary beams unprotected.
- Design individual panels without continuity.

BRE/FRACOF method

 Unprotected composite beams at high temperature carry some of the load as simply supported.

+

 Concrete slab carries remaining load in tensile membrane action. Needs enough deflection.

13

Small-deflection yield-line mechanism – slab only BRE/FRACOF

TMA enhancement calculations – BRE/FRACOF

Similarly to Hayes:

- Horizontal force equilibrium assuming mid-span crack. (But only the linear membrane traction distribution).
- Separate "membrane" enhancements e_{1m} and e_{2m} by moments about long and short edges.
- Add "bending" enhancements e_{1b} and e_{2b} to make e_1 and e_2 .
- Overall enhancement factor $e = e_1 - \frac{e_1 - e_2}{1 + 2\mu a^2}$

• ... or Gillies
$$e = e_1 - \frac{e_1 - e_2}{1 + 2\mu n a^2}$$

 Cutoff at enhancement 1.0 for aspect ratios > 1.0.

Limiting deflection (central cracking) criterion

Back to basics

Yield-line mechanism is a plastic bending mechanism at small deflections. Yield lines are essentially discrete cracks.

As deflections start to increase the yield-line pattern increases the rotations of its flat facets, with the rebar yielding until it fractures.

So the initial large-deflection mechanism is this one.

Geometry of yield-line crack opening

CRACK OPENING AT REBAR LEVEL

TOP SURFACE OF SLAB

As deflections start to increase the yield-line pattern increases the rotations of its flat facets, and rebar yields across cracks until it fractures.

- its strain exceeds its ductility.
- No tension within compression blocks

Change of stress blocks – ductile y-reinforcement

No tension within compression blocks •

•

Change of stress blocks – ductile y-reinforcement

No tension within compression blocks •

- its strain exceeds its ductility.
- No tension within compression blocks •

- its strain exceeds its ductility.
- No tension within compression blocks •

Change of stress blocks – ductile y-reinforcement

No tension within compression blocks •

Change of stress blocks – possibilities with less ductility

Change of stress blocks – possibilities with less ductility

Change of stress blocks – possibilities with less ductility

Garston test comparison

- Slab aspect ratio 1.4706 (6.360m x 9.353).
- 120mm thick, 52MPa concrete;
- Edges vertically supported.

- A142 mesh (142 mm² per metre, 580MPa steel at 200mm spacing in x and y directions) at 69mm effective depth;
- Mesh ductility 12%.

Garston comparison for different aspect ratios

Garston – apply tensile strength to change mechanism

New mechanism – central through-depth crack

From basic mechanism to centrally cracked

With attached steel beams ...

... the yield-line mechanism changes.

Forces on the *x*-aligned mechanism

Forces on the *y*-aligned mechanism

Combinations of compression block and rebar fracture

Compression block		Reinforcement mesh fracture level (<i>x</i> -aligned mechanism)					
		None	Central y	Diag. x	Central +	Central +	Central +
					Diag. y	Diag. x	Diag. x, y
Full a	above mesh	al	a1'	a1*	a1**	a1*'	a1***
	below mesh	a2	a2'	a2*	a2**	a2*'	a2***
Triangular a	above mesh	b1	b1'	b1*	b1**	b1*'	b1***
I	below mesh	b2	b2'	b2*	b2**	b2*'	b2***
Trapezoidal		c1	c1'	c1*	c1**	c1*'	c1***

Example of application: 9m x 6m composite slab

Initial yield-line parameter for different load capacities

Critical temperature variation with load capacity

Enhancement of critical steel temperature with deflection

Enhancement of critical steel temperature with deflection

Maximum steel temperature enhancements

Maximum tensile stress at section A

Existing simplified methods:

For concrete slabs:

- Fixed membrane traction distribution independent of slab deflection.
- Membrane traction distribution only valid while concrete has compression along whole yield lines.
- Assumes central crack fully formed. Rebar at ultimate strength (+10%)
- Enhancement factor starts below 1.0.

For composite slabs in fire:

- Yield-line pattern based on non-composite slab.
- Superposes high-temperature composite beam capacity and deflection-controlled slab enhancement.
- Criterion for mid-span through-depth crack is meaningless.

The new approach:

For all slabs:

- Based on the kinematics of deflecting flat facets of the small-deflection yield line mechanism, together with in-plane equilibrium of the concrete and steel forces.
- Allows concrete stress blocks to move and mesh to fracture across yield lines.

For composite slabs in fire:

- Keeps load constant, allows beams temperature to increase until yield line mechanism forms.
- Enhancement of steel beam temperature with deflection.

Biggest problems to be solved:

- Fracture ductility of rebar across discrete cracks yield lines or through-depth mid-span crack.
- Concrete tensile stress to initiate the mid-span (or intersection) crack.

Thank you