Olsson Fire & Risk consulting engineers

Probabilities of failure & prescriptive FR guidance

Dr. Danny Hopkin CEng 11th April 2017

A career of two halves

• A researcher – interested in the minutiae

- A consultant managing risk and uncertainty
- Less bothered about the minutiae, more interested in the bigger picture

A quantitative description of success

Olsson Fire & Risk

An inconsistency of 'crudeness'

Our vs. society's life safety expectation?

• Safety infinitum?

- That's not what society expects
- If a 'satisfactory' level of safety is our only goal, safety infinitum isn't a great investment
- Tolerable risk (and reliability) is central to what 'we' do

In structural engineering

$P_f(p) = P[R-S<0]$

Consider the consequences of failure

Consequences Class	Description	Examples of buildings and civil engineering works		
CC3	High consequence for loss of human life, or economic, social or environmental consequences very great	Grandstands, public buildings where consequences of failure are high (e.g. a concert hall)		
CC2	Medium consequence for loss of human life, economic, social or environmental consequences considerable	 Residential and office buildings, public buildings where consequences of failure are medium (e.g. an office building) 		
CCI	Low consequence for loss of human life, and economic, social or environmental consequences small or negligible	Agricultural buildings where people do not normally enter (e.g. storage buildings), greenhouses		

Define the acceptable probability of failure

Reliability Class	Minimum values for β			
	1 year reference period	50 years reference period		
RC3	5,2	4,3		
RC2	4,7	3,8		
RC1	4,2	3,3		

For most applications 1.3E-06 for a 1YRP

In 'fire engineering'

• Reasonable = full duration of <u>appropriate</u> fires

Olsson Fire & Risk

CONSULTING ENGINEERS

• The appropriate fires depend upon the risk (likelihood & consequence)

In 'fire engineering' (2)

Purpose group of building	Minimum periods of fire resistance (minutes) in a:					
	Basement storey * including floor over Depth (m) of a lowest basement		Ground or upper storey Height (m) of top floor above ground, in a building or separated part of a building			
	More than 10	Not more than 10	Not more than 5	Not mare Bion 18	Not more than 30	More than 30
1. Residential:			SIE	1		
 Block of flats not sprinklered aprinklered 	90 90	SNE	37 37	60""† 60""†	90** 90**	Not permitted
b. Institutional	1000	140	307	60	90	120#
z. Other residential	190	60	307	60	90	1204
2. Office:	0.					
 not sprinklered aprinklered in 	90 60	60 60	30' 30'	60 30*	90 60	Not permitted 120#
 Shop and commercial. 	2225		1.00	1.12	1.2	
 not sprinklered sprinklered ⁽²⁾ 	90 60	60 60	60 30*	60 60	90 60	Not permitted 1204
4. Assembly and recreation:			Likelihood & Consequence			
 not sprinklered sprinklered in 	90 60	60 60	80 30'	60 60	80	Not permit d
5. Industrial:		1.000		101	2.	
 not sprinklered sprinklered ⁱⁿ 	120 90	90 60	30	(x)	120.	Not permitted 1204

Reliability Targets for Fire Exposed Structures – Some Calculations

Olsson Fire & Risk

Acceptance criterion in PBD

- Absolute -
 - A reasonable worst case subjective
 - Kirby, et. al. limited applicability to multi-use
 - EN 1990 / NFSC quite generalised
 - LQI estimation of fatalities and awareness of costs

 $p_t = 1,3 \cdot 10^{-4}$ for normal evacuation $p_t [1/year]$

 $p_t = 1,3 \cdot 10^{-5}$ for difficult evacuation (hospitals, etc.)

 $p_t = 1,3 \cdot 10^{-6}$ for no possible evacuation (f.i. high rise building).

• Comparative –

• Requires an understanding of what the guidance delivers...

2. Office:						
 not sprinklered 	90	60	30*	60	90	Not permitted
 sprinklered ⁽²⁾ 	60	60	30*	30*	60	120#

Approx. Pf inherent within ADB FR Periods

Probabilistic events leading to a fire induced structural failure

Credit. R. Van-Coile

Some Sources of Uncertainty

Sources of Uncertainty (2)

Some 'simple' enclosures

Metric / Input	Office	Residential	
Area (sq.m)	500	30	
Height (m)	3.0	2.4	
Ventilation Area (sq.m)	175	6.0	
Glazing Fraction (-)	0.1 - 1.0	0.1 - 1.0	
Linings	GYPB	GYPB	

Some key assumptions

Element affected by the fire is on the floor of origin

No vertical fire spread

Only area of the compartment of origin influences P_{ig}

Some 'stochastic' inputs

As per the NFSC - C.O.V = 0.3

As per PD 7974-1

A best guess....

After J. Stern-Gottfried (mean 1,050°C)

Anecdotal – min 5 mm/s – max 20 mm/s

A simple structural element

- Steel beam supporting a concrete slab
- Protected with gypsum board
- FLS utilisation corresponding to a limiting temperature of 620°C
- For 355 MPa steel \rightarrow 150 MPa applied
- Test different protection regimes for FR30 – FR120
- Element / sub-frame failure:
 - Utility ratio > 1.0
 - Utility 150 / $k_{y\Theta}f_y$

Fire fragility curve - LHS

Utility vs. fractile for one FR60 protection solution

From fragility to Pf

Results – 500 sq.m Office

Results – 30 sq.m Apartment

Summary & Comparison

Pf of an element when afforded different FR solutions

Fire Resistance Solution (min)	Pf – Office (500 sqm)	Pf – Apartment (30 sqm)
30	1.4E-04	2.2E-05
60	1.3E-05	1.9E-05
90	3.2E-06	1.2E-05
120	1.3E-06	6.8E-06
120 + Sprinklers	1.3E-07	6.8E-07

For comparison – the NFSC (Annex B WG5)

Potentially excessive?

 $\begin{array}{l} p_t = 1,3 \ . \ 10^{-4} \ for \ normal \ evacuation \ p_t \left[1/year \right] \\ p_t = 1,3 \ . \ 10^{-5} \ for \ difficult \ evacuation \ (hospitals, \ etc.) \\ p_t = 1,3 \ . \ 10^{-6} \ for \ no \ possible \ evacuation \ (f.i. \ high \ rise \ building). \end{array}$

For comparison – EN 1990 (Ambient)

- RC1 1E-05 ٠
- RC2 1E-06 ٠
- RC3 1E-07

The need for two acceptance criteria?

Transient variation in reliability index – FR30 – 500 sqm office

Closing Remarks

- The inherent life safety Pf for an isolated element within ADB have been crudely estimated
- They are very sensitive to area and, thus, the choice of benchmark
- The order of magnitudes noted are broadly consistent with those tentatively proposed in the NFSC
- The Pf values give a means of estimating what FR is required of elements in straightforward buildings for differing consequences & likelihood
- FR120 + sprinklers \rightarrow RC3

High consequence for loss of human life, <i>or</i> economic, social or environmental consequences very great	Grandstands, public buildings where consequences of failure are high (e.g. a concert hall)	
--	--	--

Closing Remarks

- The concept of forming two life safety FLS:
 - A target for the evacuation phase (where failure is less tolerable)
 - A target for the burnout phase (where failure might be an acceptable outcome)
 - Convergence of the two targets for high-rise
- Further work:
 - A proper reliability assessment the additional sources of uncertainty
 - A continuous description of the target Pf as a function of likelihood and consequence

Thanks for your time

- <u>Danny.Hopkin@olssonfire.com</u>
- <u>https://twitter.com/OlssonFireUK</u>
- http://www.olssonfire.com/

