

REUSE OF WASTE TYRE FIBRES FOR FIRE SPALLING MITIGATION

DR SHAN-SHAN HUANG

LECTURER, UNIVERSITY OF SHEFFIELD

12/04/2016 @ IStructE HQ, Bastwick Street, London

Concrete Spalling in Fire

© Securityinfire

© Brandingenieur

Concrete Spalling in Fire

Mont Blanc tunnel after fire Source: www.phys.tue.nl/

Channel Tunnel fire Source: www.phys.tue.nl/

Spalling of a building under construction Source: www.panoramafactory.net

State of the Art

- First observation in 1854
- No common view on the causes
- No standard test method
- No guaranteed prevention measure
- No prediction model for use in design

Why still so many 'NO's?

• An extensive list of influencing parameters

• Spalling risk increases as:

- 1. Increased concrete compressive strength
- 2. Increased in-service stress condition
- 3. Increased in-service moisture content
- 4. Certain fire exposure regimes (faster heating)
- 5. Certain sizes/thicknesses/shapes of structural elements (larger elements)
- 6. Fresh concrete slump or slump flow (i.e. self-consolidating, pumped, etc)
- 7. Certain methods of manufacture (e.g. precast, pre-stressed concrete)
- 8. Absence of PP fibres (fibre dose, diameter, aspect ratio)
- 9. Absence of steel fibres (fibre dose)
- 10. Certain types of cement
- 11. Certain types and shapes of aggregates and their gradation
- 12. Certain other concrete admixtures or supplementary cementing materials (e.g. fly ash, silica fume, water reducers, air entraining agents, etc)
- 13. Certain internal reinforcement types, ratios, geometries

- An extensive list of influencing parameters
- Difficult to obtain test data of adequate quantity and consistency to support systematic, statistically reliable and efficient studies
- The rapid evolution of concrete material itself
 - Modern concretes are more vulnerable to spalling

Research Needs

- No common view on the causes
- No standard test method
- No guaranteed prevent measure
- No prediction model for use in design
- Concentration on prevention

Polypropylene Fibres

"Explosive spalling is unlikely to occur when the **moisture content** of the concrete is < **3%** by weight"

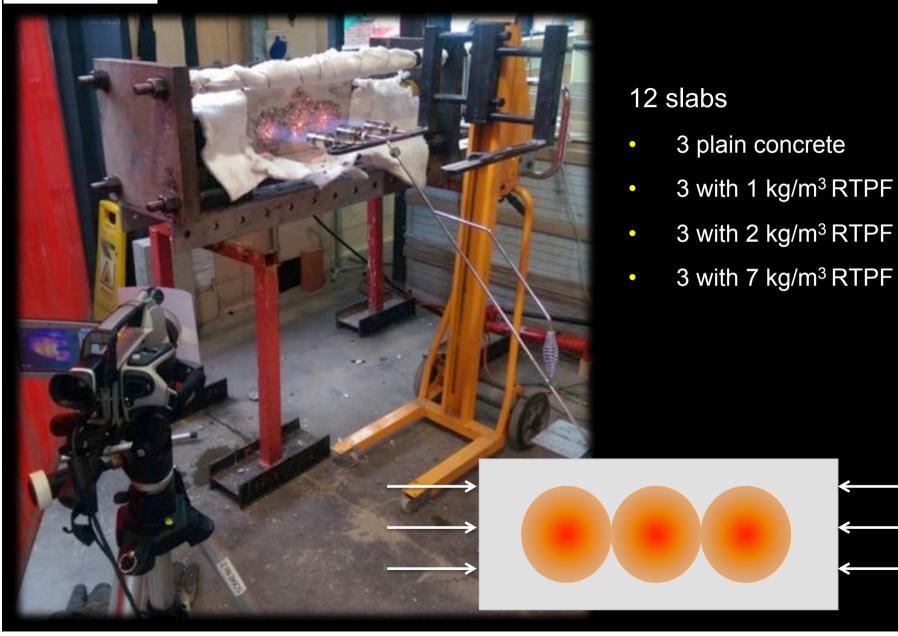
"Include in the concrete mix more than 2 kg/m³ of monofilament propylene fibres"

© www.tunneltalk.com

© www.tunneltalk.com

Reuse Tyre Polymer Fibre?

Preliminary Testing



12 cubes

- 6 plain concrete 2 spalled
- 6 with RTPF (7 kg/m³) NO spalling

Slab Tests – Series 1

Mix Design

Strength ≈ 70 MPa

PFA	99	kg/m ³
10 mm agg.	1281	kg/m³
Fine agg.	734	kg/m ³
Water	168	kg/m³
Superplasticizer	4	kg/m ³
RTPF	1, 2 or 7	kg/m ³

Fibre Processing

Fibre Processing

Fibre Processing

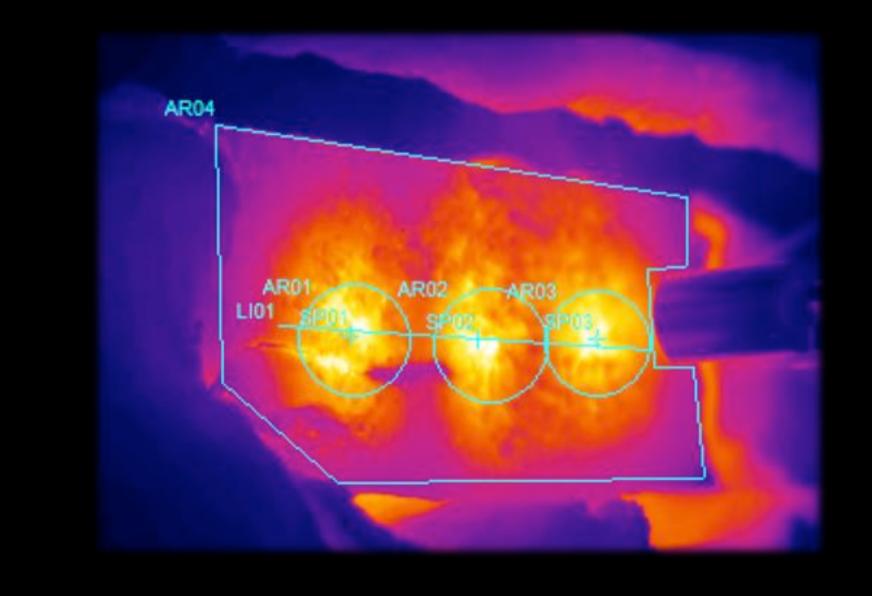
Raw Material

4.75mm Sieve

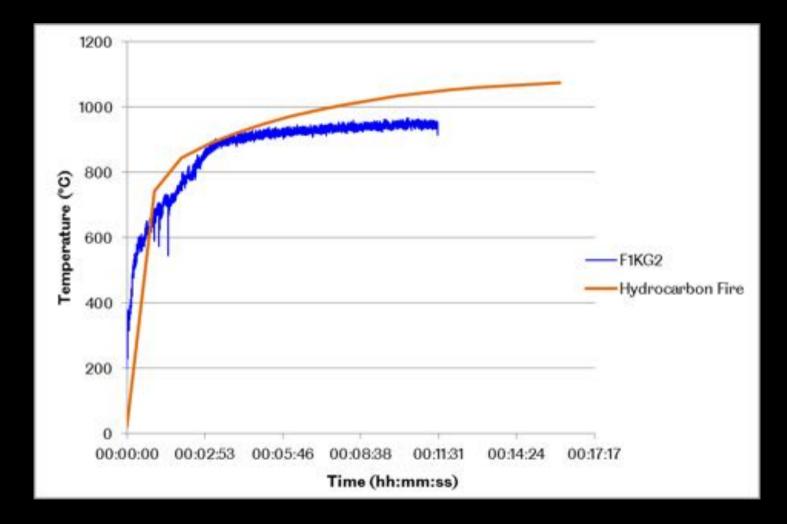
1.18mm Sieve

0.042 mm Sieve

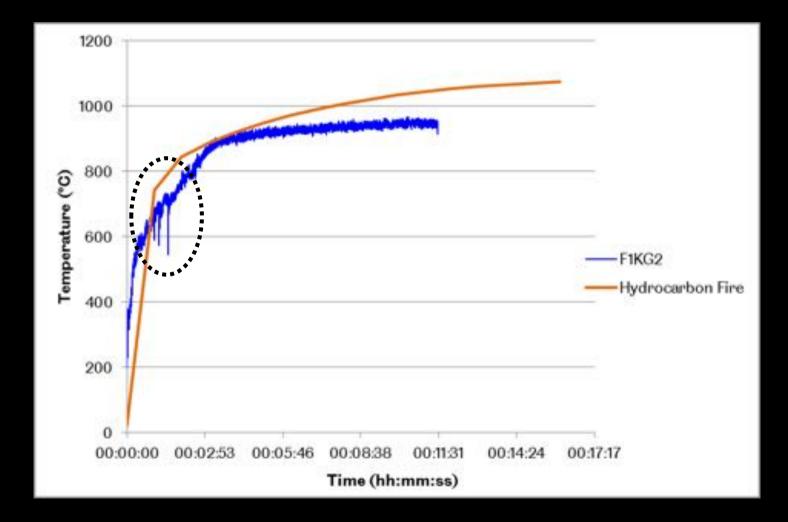
Collection drawer



Visible Fibres in Wet Concrete


Surface Temperature Measured by Thermal Imaging Camera

Surface Temperature vs. Hydrocarbon Fire



Slab Tests – During Heating

Surface Temperature vs. Hydrocarbon Fire

Slab Tests – During Heating

Slab Tests, Series 1 - Aftermath

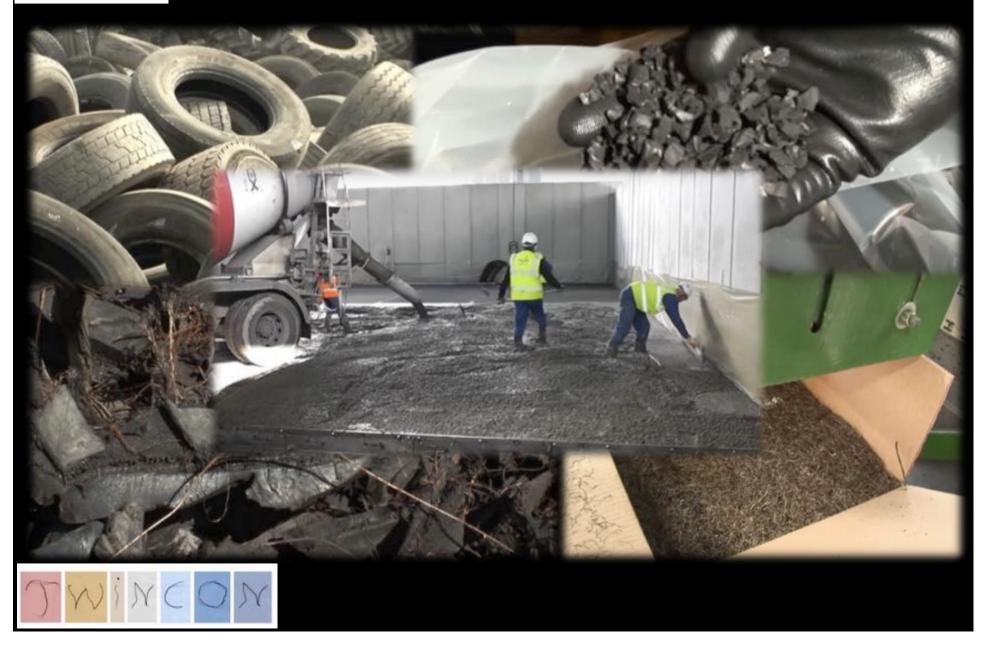
Plain Concrete	1 kg/m ³ RTPF	2 kg/m³ RTPF	7 kg/m³ RTPF
		Damaged specimen prior to fire loading	



Slab Tests - Series 1

	Spall?	Time Taken to Spall (mm:ss)	Cube Strength (MPa)	Moisture Content (%)
P1	Yes	00:30	69	2.2
P2	No	-	70	2.1
P3	Yes	00:24	68	2.2
F1KG1	No	_	65	2.9
F1KG2	Yes	01:00	68	2.9
F1KG3	Yes	00:49	67	3.2
F2KG1	_	_	68	3.2
F2KG2	No	_	67	2.9
F2KG3	No	_	67	3.0
F7KG1	No		65	3.4
F7KG2	No		65	3.3
F7KG3	No	_	65	3.3

Slab Tests – Series 2



12 slabs (with steel mesh)

- 3 plain concrete
- 3 with 40 kg/m³ RTSF
 - 3 with 40 kg/m³ RTSF & 2 kg/m³ RTPF
 - 3 with 40 kg/m³ RTSF & 5 kg/m³ RTPF

Reused Tyre Steel Fibre (RTSF)

Slab Tests, Series 2 - Aftermath

Plain Concrete	40 kg/m³ RTSF	40 kg/m ³ RTSF + 2 kg/m ³ RTPF	40 kg/m ³ RTSF + 5 kg/m ³ RTPF
	*		

Slab Tests, Series 2

	Spall?	Time Taken to Spall (mm:ss)	Cube Strength (MPa)	Moisture Content (%)
P1	Yes	01:12	70	3.0
P2	Yes	00:41	70	3.0
P3	No	-	70	3.0
SF1	No	-	73	2.8
SF2	No	-	73	2.8
SF3	No	-	72	2.8
SF2PF1	Yes	01:07	66	2.7
SF2PF2	No	_	67	2.7
SF2PF3	No	_	66	2.7
SF5PF1	No	_	68	2.7
SF5PF2	No	_	68	2.7
SF5PF3	No	_	68	2.7

Encouraging Results

12 cubes

- 6 plain concrete 2 spalled
- 6 with RTPF (7 kg/m³) NO spalling

12 slabs (Series 1; no steel mesh)

- 3 plain concrete 2 spalled
- 3 with low RTPF dose (1 kg/m³) 2 spalled
- 6 with medium & high RTPF doses (2 & 7 kg/m³) NO spalling

12 slabs (Series 2; with steel mesh)

- 3 plain concrete 2 spalled
- 3 with RTST NO spalling
- 6 with RTSF-RTPF blends 1 spalled lightly

What's Next?

The University Of Sheffield.

For Detailed Understanding of Spalling

- Phase changing of RTPF at high temperature
- X-Ray CT Monitor fibre melting, heat-induced microstructure changes (e.g. changes in porosity and pore network structure) & crack/ damage formation
- Permeability testing (Oxygen permeability cell)

University Of Sheffield.

Thank you!

Shan-Shan Huang *s.huang@shef.ac.uk*

