High strength steel at elevated temperature

DOROTHY WINFUL

Presentation overview

Introduction

Material properties at elevated temperature

Buckling behaviour at elevated temperature

Future work

High strength steels (HSS)?

High Performance Materials

High Strength Steel?

Commercial steels

	Grade	σ _y (N/mm²)	Plate Thickness (mm)	Manufacturing Process
Steel A	S690QL	690	16	Quenched and Tempered
Steel B	S700MC	700	12	TMCP + Cold-Formed

Test method:

Tensile tests at elevated temperature

1. Isothermal conditions

- Constant temperature (e.g. 100°C intervals)
- Vary strain or load at a constant rate (e.g. 0.005/mm)

2. Anisothermal conditions

- Constant load (e.g. 80 N/mm² intervals)
- Vary temperature (e.g. 10°C/min)

Experimental Set-Up

thermocouples

specimen

furnace

extensometer

TWI

Isothermal tests - Steel A (S690QL)

Isothermal tests - Steel B (S700MC)

Anisothermal results Steel B (S700MC)

Anisothermal results Steel B (S700MC)

Anisothermal results Steel B (S700MC)

Table. Average mechanical properties at ambient temperature

	f _{0.2p,20} (N/mm²)	f _{y,20} (N/mm²)	Е _{а,20} (GPa)
Steel A (S690QL)	706.3	739.3	199.3
Steel B (S700MC)	749.3	800.7	224.7

Effective yield strength, $f_{v,\theta}$ (2%)

0.2% proof strength, f_{0.2p,θ}

Elastic modulus, $E_{a,\theta}$

Material properties - summary

- ► f_{0.2p,θ}, f_{y,θ} (2%) and E_{a,θ} obtained from isothermal and anisothermal tensile tests, 20 – 800°C
- Steel B (S700MC) had better strength retention properties than Steel A (S690QL) at temperatures up to 800°C
- Does the Eurocodes safely predict the strength and stiffness reduction factors for Steel A and B?
 - No it can be unconservative and over predict the strength and stiffness at elevated temperatures when normalised by the average property at ambient temperature

PhD: HSS in fire conditions

Behaviour of steel columns

Validation model

#1 Wang & Gardner (2017)

Steel Grade	Section size	Length (mm)
S460N	100 x 100 x 5	858 - 2949
S690Q	50 x 50 x 5 100 x 100 x 5.6	426 – 2150 858 - 2950

- Ambient temperature
- End conditions: pinned

#2 Pauli et al. (2012)

Steel Grade	Section size	Length (mm)
COLL	160 x 160 x 5	480, 1840
3555	60 x 120 x 3.6	360, 1840

- Isothermal conditions: 400, 550, 700°C
- End conditions: Stub columns: fixed Long columns: pinned

Description of numerical model

Software: ABAQUS

- Element type: S4R four-node doubly curved general-purpose shell element with reduced integration
- Mesh size: equal to the thickness of the cross-section area
- Boundary conditions test boundary conditions were replicated by restraining suitable displacement and rotation degrees of freedom of the column ends.
- Stress-strain response: measured stress-strain curves at ambient and elevated temperatures were incorporated in the FE models in terms of the true stress and plastic strain
- Load response: modified Riks method was used to trace the load-deformation response and determine the ultimate test load
- Residual stress: was not considered due to low measured amplitudes and minimal influence on similar fabricated columns reported by Wang *et al.* (2017)

Validation model results: Wang *et al.* (2017)

Validation model results: Pauli et al. (2012)

Load – deflection response

Parametric studies:

Buckling behaviour of HSS columns at elevated temperature

Steel Grade	Section size	Cross-section classification	Temperature (°C)
	100 x 100 x 5.6	Class 1	20 100 200 200
Stool & (SEODOL)	100 x 50 x 4.0	Class 1	
SLEELA (SOSUQL)	100 x 100 x 5.6	Class 3	400, 500, 600, 700,
	100 x 50 x 4.0	Class 3	000
	100 x 100 x 5.6	Class 1	20, 100, 200, 300,
Stool P (SZOONAC)	100 x 50 x 4.0	Class 1	400, 500, 600, 700,
SLEEL D (STUDIVIC)	100 x 100 x 5.6	Class 3	800
	100 x 50 x 4.0	Class 3	

- ▶ Stress strain response (isothermal tests) \rightarrow true stress and plastic strain
- ► Global imperfection: L/1000
- Geometric imperfection based on Dawson and Walker model
- ▶ RHS: major and minor axis
- End conditions: Pinned

Eurocode approach

The buckling design resistance (N_{b,fi,t,Rd}) for Class 1-3 members:

$$N_{b,fi,t,Rd} = \frac{\chi_{fi}Ak_{y,\theta}f_{y,20}}{\gamma_{M,fi}} \implies \chi_{fi} = \frac{N_{b,fi,t,Rd}}{Ak_{y,\theta}f_{y,20}}$$

where

 $\chi_{\rm fi}$ is the reduction factor for flexural buckling in the fire design situation,

A is the gross area cross-section of the structural member,

f_{y,20} is the effective yield strength, taken as the stress at 2% total strain at ambient temperature

 $k_{y,\theta}$ is the reduction factor for the effective yield strength (i.e. $k_{y,\theta} = f_{y,\theta}/f_{y,20}$)

 $\gamma_{M,fi}$ is the partial factor for fire situation which is taken as 1.0 in this study

The non-dimensional slendrness ($\overline{\lambda}_{\theta}$) for Class 1-3 members:

 $\overline{\lambda}_{\theta} = \overline{\lambda} \, (k_{y,\theta} \,/\, k_{Ea,\theta})^{0.5}$

Buckling coefficients – Steel A (S690QL)

Buckling coefficients - Steel B (S700MC)

What happens if $f_{0.2p, \theta}$ is used instead of $f_{y, \theta}$ (2.0%)?

$$\chi_{fi} = \frac{N_{b,fi,t,Rd}}{Ak_{y,\theta}f_{y,20}} \quad \text{against} \quad \overline{\lambda}_{\theta} = \overline{\lambda} \ (k_{y,\theta} \ / \ k_{Ea,\theta})^{0.5}$$

What happens if $f_{0.2p, \theta}$ is used instead of $f_{y, \theta}$ (2.0%)?

$$\chi_{fi} = \frac{N_{b,fi,t,Rd}}{Ak_{0.2p,\theta}f_{0.2p,20}} \text{ against } \overline{\lambda}_{\theta} = \overline{\lambda} \left(\frac{k_{0.2p,\theta}}{k_{Ea,\theta}} \right)^{0.5}$$

Buckling coefficients – Steel A (S690QL)

Buckling coefficients – Steel B (S700MC)

Buckling behaviour - summary

Numerical study on the flexural behaviour HSS columns (S700MC and S690QL)

- The production route (QT or TMCP) influences the buckling behaviour at ambient and elevated temperatures
- The Eurocode is generally conservative with respect to the buckling coefficients and safely predicts the buckling resistance of steel B (S700MC), while a lower buckling curve may be needed for steel A (S690QL)

The f_{0.2p, θ} is better parameter than f_{y, θ} (2.0%) for deriving buckling fire curves

Steel A (S690QL)

Steel B (S700MC)

Table. Average mechanical properties at ambient temperature

EPSRC

Pioneering research and skills

	f _{0.2p,20} (N/mm²)	f _{y,20} (N/mm²)
Steel A (S690QL)	706.3	739.3
Steel B (S700MC)	749.3	800.7

E: dorothy.winful@brunel.ac.uk||dorothy.winful@affiliate.twi.co.uk

References

- ▶ ABAQUS, Version 6.12-2. Dassault Systèmes Simulia Corp. USA, 2015
- Chen, J., Young, B., Uy, B. "Behaviour of high strength structural steel at elevated temperatures," Journal of Structural Engineering 132, No. 12, pp. 1948-1955, 2006
- Choi, I.–R., Chung, K–S., Kim, D.–H. "Thermal and mechanical properties of high strength structural steel HSA800 at elevated temperatures". *Material and Design 63*, pp. 544–551, 2014
- EN 1993-1-2. Eurocode 3: Design of steel structures Part 1-2: General rules Structural fire design. CEN, Brussels, 2005
- EN 1993-1-12. Eurocode 3: Design of steel structures Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S 700. CEN, Brussels, 2007
- Pauli, J., Somaini, D., Knobloch, M., Fontana, M. "Experiments on steel under fire conditions". ETH Zurich, Institute of Structural Engineering. IBK test report No. 340, Zurich, Switzerland, 2012
- Qiang, X., Biljaard, F. and Kolstein, H. "Dependence of mechanical properties of high strength steel S690 on Elevated Temperatures," *Construction and Building Materials.* 30, pp. 73-79, 2012
- Wang, J., Gardner, L. "Flexural buckling of hot-finished high strength steel SHS and RHS columns". ASCE (submitted), 2017
- Wang, J., Afshan, S., Schillo, N., Theofanous, M., Feldmann, M., Gardner, L. "Material properties and compressive local buckling response of high strength square and rectangular hollow sections". *Engineering Structures 130*, pp. 297-315, 2017

