BRE: Behaviour of thermal rehabilitated façades in case of fire

Octavian Lalu PhD Fire Safety Group 11.04.2017

Presentation structure Types of façade systems

Examples of fires involving combustible insulation materials

Design recommendations

Experimental research – medium scale, large scale and modelling

Conclusions

Types of façade systems

 Ventilated façade composite systems

Execution detail

- Reduced time of execution
- Aesthetic system, which does not bring considerable load to on the structure

Types of façade systems

– External Thermal Insulation Composite System (ETICS)

Execution detail

- Over 5000 building rehabilitated in Bucharest
- No studies on fire behaviour

Examples of fire involving combustible insulation materials

Examples of fires involving combustible façades

- Office Building, Bucharest 2009

– Millennium Business Centre – 72 m height

Examples of fires involving combustible façades

- Block of flats, Romania 2012

Examples of fires involving combustible façades

- Block of flats, Hungary 2009

Fire examples

- Block of flats, South Korea 2015

Fire examples

- High rise buildings

Tamweel Tower 2012

Al Tayer Tower 2012

Address Downtown Hotel 2016

Fire examples

- Residential building, Russia 2014

Experimental work

- Design recommendations in Germany

- Design recommendations proposed by VTT Finland

Installation on facades

Experimental research

Large Scale Standard Testing

LEPIR II Large Scale test

Experimental research – medium scale, large scale and modelling

Experimental Research - Medium Scale Tests

- barrier
- System I ETICS, no fire System II ETICS with fire barrier, d = 30 cm

Experimental Research - Medium Scale Tests

barrier, d = 50 cm

- System III - ETICS, with fire - System IV - ETICS with fire barrier, d = 30 cm

Experimental Research - Medium Scale Tests

composite fire barrier, d = 50 cm

– System V – ETICS, with – System VI – ETICS with composite fire barrier, d = 50 cm

System I

System II

System III

System IV

System V

System VI

System I

System III

System IV

System V

System VI

ETICS with composite fire barriers

The fire is limited by the oxygen level min 16,5 / t=990s

Ventilation procedure – development phase min 23,5 / t=1410s

Flashover at min 29 / t=1740s

Fully developed phase min 32,5 / t=1950s

Cooling phase min 70,5 / t=4320s

Cooling phase min 57,5 / t=3450s

Cooling phase min 70,5 / t=4320s

Large Scale Experimental Research - results

Large Scale Experimental Research

Post-fire analysis

Large Scale Experimental Research

Post-fire analysis

Second floor

First floor

Conclusions

Conclusions

- The use of combustible materials in the façades systems of tall building represents an increase risk of fire spread
- Real behaviour of façades can be determined only through large-scale testing
- There is a need of harmonised European large-scale testing method for façade systems
- The risk of vertical fire spread on façades can be reduced by appropriate design solutions – fire barriers
- A new design composite fire barrier has been tested and the results shown that it has the potential to reduce vertical fire spread

