

Fire resistance of concrete slabs acting in compressive membrane action

No need for steel anymore? 11th of April 2017 – IStructE HQ London

Introduction

- Bearing capacity of (existing) slabs?
- Experiences in building renovations with a surprising low capacity following classic bending theory, mostly with rather thin slabs.
- No excessive deformations noted before => no tensile membrane action involved but probably compressive membrane action.
- What about fire resistance of such slabs?

Compressive membrane action (CMA)

• The arch effect – compressive membrane action

• Lateral restraint capable to withstand compressive forces

Compressive membrane action (CMA)

• CMA mechanism fails due to concrete crushing => TMA or failure

CMA at elevated temperature

• Isothermal lines

CMA with FEM models?

- By the aid of plane elements with bending and membrane behaviour.
- Advanced material model (Explicit Transient Creep).
- At ambient conditions, time dependent load function (20s)

6

CMA with FEM models?

- Vertical section with superimposed layers of shell elements
- Advanced material model (Explicit Transient Creep).
- At ambient conditions, time dependent load function (20s)
- Rebar elements

• Adding elevated temperature profile pro layer is quiet simple

Case study – building description

- Leopold tower in Brussels near the NATO (Evere).
- Office building in the past with screed and mobile load of 3 $\rm kN/m^2$
- Slab of 0.14 m, 5.04 m span, width 16.5m, upper (curtailed) and lower principal reinforcement = Ø8/0.15 (335 mm²/m)

Case study – building description

- Transformation into an apartment building with reduced mobile loads but increased super imposed dead loads.
- Out of bending theory; insufficient reinforcement even for the existing situation.
- But restraints available at the extremes => CMA possible?
- Due to high costs of external reinforcement + fire protection and possible benefits the owner agreed with a load test.

Case study – Test set-up

- Load test done till ULS-values (for ambient conditions); 11.58 kN/m²
- Swimming pools of 0.8 m + DL.

sweco 送

Case study – Bearing capacity

• Elastic bending theory

$$M_{Rd} = (h - c_{centre} - \frac{x}{2})A_s f_{yd} = (h - c_{centre} - \frac{A_s f_{yd}}{2bf_{cd}})A_s f_{yd}$$

- Span 13.17 kNm, hogging moments 11.52 kNm with sum 24.69 kNm
- With $\Sigma M=wL^2/8 \Rightarrow w < 7.78 \text{ kN/m}^2$ and needed + test 11.58 kN/m²?
- Only dead loads are representing already 6.18 kN/m² (factored)
- Plastic analysis with membrane action results in 0.35 m deformation!
- Measured deformations of only a few mm
- Only CMA can explain this behaviour

Case study – FEM @ ambient temperature

- CMA simulation without reinforcement
- Full load available after 20 s with equal increments/time step
- Principal stresses at 10.7 s (about DL) & 12.5 s

Diamond 2016 for SAFIR

FILE : sh1_amb

Case study – FEM @ ambient temperature

• Principal stresses at 13.5 s

Case study – FEM @ ambient temperature

Measured deformations related to computed values

• Seems to correspond on a reasonable way \odot

Case study – FEM @ elevated temperature

• Temperature profiles out of NBN EN 1992-1-2

Case study – FEM @ elevated temperature

• Principal stresses at 20.0 s with layered shell elements

Diamond 2016 for SAFIR

Case study – FEM @ elevated temperature

• Principal stresses at 1200 s

Case study – Failure time with protection

• Temperature profiles out of NBN EN 1992-1-2

Case study – Failure time with protection

• Protection material; presume the same efficiency as one layer of 23 mm of concrete:

•Let's try the simple way:

- 1. At ambient temperature, the horizontal reaction force is computed as: $H_{sd} = M_{sd}/z = p_{sd}.L^2/(8.z)$ with z = the lever arm or arch camber, p_{sd} = design load and L the span.
- 2. The depth of the compression area is: $x = H_{sd}/(b.f_{cd})$ with b the slab width and f_{cd} the design concrete strength in compression.
- 3. The lever arm is modified to account for the depth x: z = h x/2 with h the slab height; some iterations may be required from 1 to 3 to find the final value of the lever arm.

•Let's try the simple way:

- 1. In case of fire, the applied load is lower than the design load at ambient temperature; hence the horizontal reaction force is reduced as: $H_{fi} = p_{fi} L^2/(8.z_{fi})$ with z_{fi} = lever arm and p_{fi} = load in case of fire.
- 2. The depth of the compression area in case of fire is: $x_{fi} = H_{fi}/(b.f_{\theta})$. Looking to *Fig. 1a*, the temperature θ of the lower part of the slab will be important at the origins of the arch.
- 3. The lever arm is modified to account for the depth x_{fi} : $z_{fi} = h (x_{fi}/2)$; some iterations may be required from 1 to 3 to find the final value of the lever arm in case of fire.
- 4. Finally, the verification of structural safety in the fire situation is performed as: as long as H_{fi} < H_{sd} , the slab is able to sustain the load in the fire situation.

•Let's try the simple way:

- 1. In case of fire, the applied load is lower than the design load at ambient temperature; hence the horizontal reaction force is reduced as: $H_{fi} = p_{fi} L^2/(8.z_{fi})$ with z_{fi} = lever arm and p_{fi} = load in case of fire.
- 2. The depth of the compression area in case of fire is: $x_{fi} = H_{fi}/(b.f_{\theta})$. Looking to *Fig. 1a*, the temperature θ of the lower part of the slab will be important at the origins of the arch.
- 3. The lever arm is modified to account for the depth x_{fi} : $z_{fi} = h (x_{fi}/2)$; some iterations may be required from 1 to 3 to find the final value of the lever arm in case of fire.
- 4. Finally, the verification of structural safety in the fire situation is performed as: as long as H_{fi} < H_{sd} , the slab is able to sustain the load in the fire situation.

•Case study => doubtful result ?

- 1. $H_{sd} = M_{sd}/z = 11.58.5.04^2/(8.0.133) = 276.46 \text{ kN/m}$ with z = 0.95.0.140 = 0.133
- 2. $x = 276.46/(0.85 \cdot 30/1.5) = 16.26$ mm, hence take 16 mm.
- 3. z = 0.140 0.016/2 = 0.132 m which can be considered as converged, taking into account 1 % deviation compared with 0.133.
- 4. $H_{fi} = 8.08.5.04^2/(8 \cdot z_{fi}) \le 276.46 \text{ kN/m}$ which leads to $z_{fi} \ge 0.093 \text{ m}$
- 5. $z_{fi} = 0.140 (x_{fi}/2) \ge 0.093 \text{ or } x_{fi} \le 0.093 \text{ m}$
- 6. $x_{fi} = 276.46/(f_{c\theta}/f_{ck} \cdot 30) \le 93 \text{ mm}$, the maximum allowable reduction to respect this equilibrium is obtained if $f_{c\theta}/f_{ck} \ge 0.10$ and can be applied at the origin of the arch. Take this equal to the one corresponding to the temperature in the ultimate fiber of the layer as a rough and save simplification. Following table 3.1 of EC2-1-2 [4] this means 871 °C would be acceptable, which appears at R57 < R120 required but > R29 following SAFIR analysis

Further developments

- Punching problem:
 - Has the same failure behaviour
 - Is related to the same mechanism
 - But we even don't understand and agree about at ambient conditions.

...

• ...

Conclusions

- CMA can play a major role in restrained structures. With advanced FEM-analysis and suitable material models this can be simulated with a reasonable agreement for the vertical deformations.
- Modelling at elevated temperatures is even more challenging, however maximum surface temperatures could be derived for a practical case study and subsequently the needed fire protection.
- Our understanding of CMA is still to limited to built up simple engineering models.

