

Hold the (bond) line

PhD student Antonela Čolić Structural and Fire Safety Engineering

> Supervisor(s) Prof Luke Bisby

(Dr Felix Wiesner | Dr Danny Hopkin | Dr Michael Spearpoint | Dr Angus Law)

fire safety strategy (?)

energy balance

terminology crash course

A14 2000

- ³ C. Dagenais, L. Ranger, Revisiting heat delamination characteristics of adhesives in cross-laminated timber, in: WCTE 2018 World Conf. Timber Eng., 2018.
- ⁴ S. Clauß, M. Joscak, P. Niemz, "Thermal stability of glued wood joints measured by shear tests". In: Eur. J. Wood Wood Prod. 69 (2011), pp.101–111. https://doi.org/10.1007/s00107-010-0411-4
- ⁵ L. Schmidt, Experimental study on the effect of char fall off on the heat transfer within loaded CLT columns exposed to radiant heating, The University of Edinburgh: College of Science and Engineering, 2020.
- ⁶ A.I. Bartlett, R.M. Hadden, L.A. Bisby, "A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction". In: *Fire Technol.* 55 (2019), pp.1–49. https://doi.org/10.1007/s10694-018-0787-y.

back to energy balance

$Q_{total} = Q_{fuel load (furniture)} - Q_{loss_construction} - Q_{loss_openings} + Q_{construction} + Q_{reradiation_floor}$

Char fall off at the bond line Delamination

CROSS- SECTION REDUCTION

Hold the (bond) line STRUCTURES IN FIRE FORUM – 12th May 2023

 $Q_{total} = Q_{fuel load (furniture)} - Q_{loss_construction} - Q_{loss_openings} + Q_{construction} + Q_{reradiation_floor} + Q_{reradiation_wall}$

POTENTIAL STRUCTURAL COLLAPSE

Q_{TOTAL}=Q_{fuel load} (furniture) + Q_{construction} + Q_{reradiation_floor}+ Q_{reradiation_wall} - Q_{loss_construction} - Q_{loss_openings}

Understanding fire induced delamination

WHAT IS BOND LINE?

WHAT IS ATTACKING THE BOND LINE?

Optimistic project plan

EXPERIMENTAL CAMPAIGN

SCALE	WHAT?	WHY?	HOW?
PHASE 1: MICRO [?]		Thermal behaviour Thermo-mechanical behaviour	TGA DSC DTMA
PHASE 2: BENCH		Hydro-thermal behaviour	NEUTRON RADIOGRAPHY
PHASE 3: INTERMEDIATE		Hydro-thermo-mechanical behaviour	HEAT FLUX SHEAR

EXPERIMENTAL CAMPAIGN

SCALE	WHAT?		WHY?	HOW?
PHASE 1: MICRO		Interphase: Shear lap	Thermal behaviour Thermo-mechanical behaviour	TGA DSC DTMA
	Sample holder		<image/>	1-C-PUR D

	Stress-strain ambient cond.	Stress-strain thermal cond.	Modulus Glass transition
Why	Is there a difference? Is there a critical temperature?		
	Is glass transition a thing?		

Combination	А	В	С
Structural load			$\wedge \wedge \vee$
Structural load	1N/min, 1N-F _{max}	F _{max}	± 5μm, 1Hz
Thormal load			
mermanoau	35°C	35 - 300°C	

Hold the (bond) line STRUCTURES IN FIRE FORUM – 12th May 2023

Is there a difference? I don't think so.

Combination B | 18N + 35-300*C

Is there a difference? Yes.

Is there a critical temperature? 220-230°C.

1-C-PUR-ND

BUT! Tg not always easy to spot for polyurethanes

SCALE	WHAT?	WHY?	HOW?
PHASE 1: MICRO [?]		Thermal behaviour	TGA DSC

1-C-PUR D

1-C-PUR ND

Thermo-mechanical - 1-C-PUR D interphase fails at 220°C Thermal – 1-C-PUR D adhesive softens at 250°C

Chemistry matters

Can we upscale?

Ambient results

Fire results

21C, 5kN	25 kW/m ²	50 kW/m ²
MC 9%	D (5) ND (3)	D (5) ND (5)
MC 14%	D(5)	D (5) ND (3)

Why	Does MC matter? Heat flux constant, load constant	
	Does the heat flux make a difference? MC constant, load constant	
	Does it differ for the two adhesives?	
	Failure mode? Failure time? Critical temperature? Displacement rate?	

Failure mode

Delamination present for both adhesives Higher moisture content not discussed for ND

Failure time delamination

Wider spread in non delaminating results

Failure time is not proportionally higher for the lower heat flux

Non-delaminating adhesive can delaminate

It is "just" the matter of force

Failure mode and time – Variable: Heat flux

Failure time is not strongly/repetatively dependent on the heat flux

Higher moisture content seems to bring the results for the two heat fluxes together

Bond line temperature delamination

Failure mode and time – Variable: moisture content

1-C-PUR D | HF 25 kW/m²

1-C-PUR D | HF 50 kW/m²

Higher moisture content does not lead to earlier failure time

There is some interaction with adhesive and moisture

I just do not understand it yet

MC 9% | HF 25 kW/m²

MC 9% | HF 50 kW/m²

Bond line temperature delamination

Failure temperatures vary!

No conclusions

Future work

Shear stress distribution analysis In-depth thermal penetration

Connection to microscale results

No conclusions – no questions! :D

PhD student **Antonela Čolić** Structural and Fire Safety Engineering

> Supervisor(s) Prof **Luke Bisby**

(Dr Felix Wiesner | Dr Danny Hopkin | Dr Michael Spearpoint | Dr Angus Law)