Meta-analysis of code-based design methods to quantify the fire resistance of concrete columns

> Mahadev Rokade Ph.D. student Supervised by David Rush and Tim Stratford

STRUCTURES IN FIRE FORUM

Thomas Gernay, Jean-Marc Franssen, Fabienne Robert, Robert McNamee, Roberto Felicetti, Patrick Bamonte, Sven Brunkhorst, Siyimane Mohaine, Jochen Zehfuß, Experimental investigation of structural failure during the cooling phase of a fire: Concrete columns,Fire Safety Journal, Volume 134,2022,

Introduction

- Mechanical response combined with fire is critical to evaluate the failure capacity of any structural elements in the building.
- But the columns are a critical component in buildings, failure of one column will lead to the failure of the whole structure.
- This study aims to review and assess available experimental data against <u>non-advanced</u> methods given in different codes for the failure time of columns in fire scenarios.
- Total 6 different methods/ tabular guidelines were used to compare the fire resistance as follows:
- 1. Eurocode Method A
- 2. Eurocode Method B
- 3. Australian (AS 3600) code Method
- 4. ACI 216.1 code Method
- 5. DBJ/T 15-81 Chinese Code Method
- 6. NBC 2016- National Building Code of India

1) Eurocode (EN 1992-1-2)- Method A

History

- This equation is proposed in 1995 by Dotreppe and Franseen¹
 and further refined by Franseen² in 2000. Later adopted into the Eurocode³.
- Method A is based on 76 full-scale tests carried out in 4 different labs
- 21- NRC (National research council of Canada)⁴
- 39 Technical University of Braunschweig, Germany⁵.
- 12 University of Ghent, Belgium⁶.
- 4- University of Liege, Belgium⁶.
- In 2003, Franseen extended this study with additional tests on circular columns and proved the applicability of equations.

^{1.} J.C. Dotreppe, J.M. Franssen, Y. Vanderzeypen, A Straightforward Calculation Method for the Fire Resistance of Reinforced Concrete Columns, 10 pages, First European Symposium on Fire Safety Science, 1995

^{2.} J.M. Franssen, Design of Concrete Columns Based on EC2 Tabulated Data – a Critical Review. First International Workshop "Structures in Fire", 2000, pp. 323–339. Copenhagen.

^{3.} EN 1992-1-2, Eurocode 2 – Design of Concrete Structures. Part 1–2: General Rules – Structural Fire Design, CEN, Brussels, 2019.

^{4.} T.T. Lie, J.L. Woollerton, Fire Resistance of Reinforced Concrete Columns: Test Results, National Research Council of Canada, Institute for Research in Construction, Ottawa, Canada, 1988.

^{5.} R. Haß, Zur praxisgerechten brandschutztechnischen Beurteilung von Stützen aus Stahl und Beton. Heft 69, Institut für Baustoffe, Massivbau und Brandschutz der Technischen Universit" at Braunschweig, 1986.

J.C. Dotreppe, J.M. Franssen, A. Bruls, R. Baus, P. Vandevelde, R. Minne, D. Van Nieuwenburg, H. Lambotte, Experimental research on the determination of the main parameters affecting the behaviour of reinforced concrete columns under fire conditions, Mag. Concr. Res. 49 (179) (1997) 117–127.

Eurocode (EN 1992-1-2)- Method A

Standard		Minimum dim	ensions (mm)					
fire	Colum	Column width b _{min} /axis distance a of the main bars						
resistance	Column ex	posed on more that	an one side	Exposed on one side				
	$\mu_{\rm fi} = 0.2$	μ_{fi} = 0.5	μ _{fi} = 0.7	$\mu_{\rm fi} = 0.7$				
1	2	3	4	5				
R 30	200/25	200/25	200/32 300/27	155/25				
R 60	200/25	200/36 300/31	250/46 350/40	155/25				
R 90	200/31 300/25	300/45 400/38	350/53 450/40**	155/25				
R 120	250/40 350/35	350/45** 450/40**	350/57** 450/51**	175/35				
R 180	350/45**	350/63**	450/70**	230/55				
R 240	350/61**	450/75**	-	295/70				

Minimum 8 bars

[▲] For prestressed columns the increase of axis distance according to 5.2. (5) should be noted. (▲)

Parameters	Tabular	Equation
Effective length in fire (I _{0,fi})	≤ 3 m	$2 \leq I_{0,fi} \leq 6 \; \mathrm{m}$
Reinforcement ratio (As/Ac)	4%	4%
Slenderness of column	N/A	N/A
Heated Sides	1 or >1	>1
Cover (mm)	25-75	25-80
Width of column (mm)	200-450	200-450 (h/b ≤ 1.5)

2) Eurocode (EN 1992-1-2)- Method B

	1	1				1	75 r
Standard fire	Mechanical reinforcement	Minimum dim	ensions (mm). Co	lumn width <i>b_{min}/a</i>	xis distance a		70
resistance	ratio ω	<i>n</i> = 0,15	<i>n</i> = 0,3	<i>n</i> = 0,5	<i>n</i> = 0,7		
1	2	3	4	5	6]	65
R 30	0,100 0,500 1,000	150/25* 150/25* 150/25*	150/25* 150/25* 150/25*	200/30:250/25* 150/25* 150/25*	300/30:350/25* 200/30:250/25* 200/30:300/25*	Load Level	
R 60	0,100 0,500 1,000	150/30:200/25* 150/25* 150/25*	200/40:300/25* 150/30:200/25* 150/30:200/25*	300/40:500/25* 250/35:350/25* 200/40:400/25*	500/25* 350/40:550/25* 300/50:600/30		
R 90	0,100 0,500 1,000	200/40:250/25* 150/35:200/25* 200/25*	300/40:400/25* 200/45:300/25* 200/40:300/25*	500/50:550/25* 300/45:550/25* 250/40:550/25*	550/40:600/25* 500/50:600/40 500/50:600/45		Sig 45 — R90 Sig 40 — R120
R 120	0,100 0,500 1,000	250/50:350/25* 200/45:300/25* 200/40:250/25*	400/50:550/25* 300/45:550/25* 250/50:400/25*	550/25* 450/50:600/25* 450/45:600/30	550/60:600/45 500/60:600/50 600/60		35 30 R180 R240
R 180	0,100 0,500 1,000	400/50:500/25* 300/45:450/25* 300/35:400/25*	500/60:550/25* 450/50:600/25* 450/50:550/25*	550/60:600/30 500/60:600/50 500/60:600/45	(1) 600/75 (1)		
R 240	0,100 0,500 1,000	500/60:550/25* 450/45:500/25* 400/45:500/25*	550/40:600/25* 550/55:600/25* 500/40:600/30	600/75 600/70 600/60	(1) (1)		100 150 200 250 300 350 400 450 500 550 600
* Normally the	cover required b	y EN 1992-1-1 wil	l control.	000/00			h min (mm)
(1) Requires w	idth areater thar	600 mm. Particul	lar assessment fo	r bucklina is reau	ired.		~ ····· (·····)
							Parameters Method B
	/					Effecti	ive length in fire (I _{0,fi}) Not specified
		1 - > 4	Car			Reinf	forcement ratio (ω) 0.1,0.5 and 1
$\omega = \frac{AS \times J y}{Ac \times f c}$		Slen	nderness of column < 30				
Αιλβι			Heated Sides Not specified				
							Cover (mm) 25-75
						Wid	th of column (mm) 150-600

7. AS3600, Australian Standard. Tech. rep., Standards Australian Committee, Sydney, 2009. 8. AS3600, Australian Standard. Tech. rep., Standards Australian Committee, Sydney, 2018.

4) ACI 216.1 Method

Table 2.7—Minimum	concrete co	olumn size
-------------------	-------------	------------

Apprepate	Minimum column dimension for fire-resistance rating, in.					
type	1 hour	1-1/2 hours	2 hours	3 hours	4 hours	
Carbonate	8	9	10	11	12	
Siliceous	8	9	10	12	14	
Semi- lightweight	8	8-1/2	9	10-1/2	12	

Table 2.8—Minimum concrete column size with fire exposure conditions on two parallel sides

Apprepate	Minimum column dimension for fire-resistance rating, in.*						
type	1 hour	1-1/2 hours	2 hours	3 hours	4 hours		
Carbonate	8	8	8	8	10		
Siliceous	8	8	8	8	10		
Semi- lightweight	8	8	8	8	10		

*Minimum dimensions are acceptable for rectangular columns with a fire exposure condition on three or four sides, provided that one set of the two parallel sides of the column is at least 36 in. long.

- Depends on the type of aggregates, minimum size of columns, and exposure conditions.
- Limitations-
- Table 2.7 is valid for the column with full exposure (4 sides) while Table 2.8 is valid for the exposure conditions of two parallel sides.
- For strength ≤ 12000 *psi* (82.7 *Mpa*) The values in the table are satisfied.
- If strength ≥ 12000 psi (82.7 Mpa) The least dimension for the column for 1-4 hr FRR should be 24 inches.

5) DBJ/T 15-81 (Chinese Code Method)

$$\beta_{\mu} = c_{1}\mu^{2} + c_{2}\mu + c_{3}$$

$$\beta_{L} = c_{4}L + c_{5}, \ \beta_{b} = c_{9}b + c_{10}$$

$$\beta_{hdb} = c_{6}\left(\frac{h}{b}\right)^{2} + c_{7}\left(\frac{h}{b}\right) + c_{8}$$

$$\beta_{e} = c_{11}e^{3} + c_{12}e^{2} + c_{13}e + c_{14}$$

$$\beta_{o} = c_{15}\rho + c_{16}$$

8

玄粉	组合细问压刀作用点至截面重心的连线与 z 细的夹用 a					
AN SA	0°	22. 5°	45°	67. 5°	90°	
c_1	1.518	1.385	1. 327	1.641	1.696	
c_2	-2. 690	-2. 445	-2. 328	-2. 933	-3. 225	
c_3	1.355	1.231	1. 167	1. 490	1.693	
c_4	-0. 877	-0. 901	-1. 233	-1. 141	-1.026	
c_5	7.011	7.286	10.119	9. 484	9.634	
c_6	-0. 666	-0.754	-1.046	-0.977	-0. 326	
c_7	3. 138	3.322	4, 242	3.852	3. 251	
c_8	2.058	1. 824	1. 146	0.060	-0. 076	
<i>c</i> ₉	2.093	2.038	1.614	1. 479	3. 523	
c_{10}	-0. 277	-0. 267	-0. 209	-0. 191	-0. 443	
c_{11}	-1.512	-1.688	-2.956	-1.532	-0. 932	
c_{12}	7.375	8. 481	12. 424	7.882	4. 070	
c ₁₃	-13. 285	-14. 726	-18. 366	-14. 523	-6. 727	
c ₁₄	23. 334	25. 565	31. 138	29.643	11.166	
c ₁₅	5. 547	5.859	4.656	5.880	3. 920	
c ₁₆	1. 141	1. 144	0. 896	1.241	1.210	

(axial pressure/ axial bearing capacity of co	olumn)
Parameters	DBJ/T 15-81
Effective length in fire (I _{0,fi})	$2 \le L \le 4 m$
Reinforcement ratio (As/Ac)	$1\% < \rho < 3\%$
Load ratio	0.2< <i>μ</i> <0.7
Heated Sides	Not specified
Cover (mm)	Not Specified
Width of column (mm)	300-600

10. DBJ/T 15-81-2011. Code for fire resistance design of concrete structures in buildings. China Architecture& Building Press; 2011 [in Chinese].

6) IS 1642:1989- NBC 2016

	Table 8 Reinforc (Clau	ed Concreto use 6.1)	e Columi	15			
Nature of Construction	and Materials	Minin	um Dime fo	nsions (m r a Fire R	m), Exclu esistance (uding any of	Finish,
		_ <u>↓</u> h	l h	1 <u>‡</u> h	2 h	3 h	4 h
I Fully exposed	Width	150	2 0 0	250	300	400	450
	Cover	20	25	30	35	35	35
2 50 percent exposed	Width	125	160	200	200	300	350
	Cover	20	25	25	25	30	35
3 One face exposed	Thickness	100	120	140	160	200	240
	Cover	20	25	25	25	25	25

 The Indian code is dependent on the type of exposure (partially, fully, or 50 %), with a minimum thickness of column size and its cover thickness, type of construction.

Parameters	NBC 2016
Effective length in fire (I _{0,fi})	Not specified
Reinforcement ratio (As/Ac)	Not specified
Load ratio	Not specified
Heated Sides	Fully, 50% and one face
Cover (mm)	20-35
Width of column (mm)	150-450

Experimental Database for Meta-analysis

Dataset on which the equation developed

Other Dataset

Total number of tests	76		
	Square	70	
Types of column	Rectangular	6	
	FF	16	
End conditions	FP	5	
	РР	55	
Lood ratios	<0.4	45	
	0.4-0.9	31	
	<200	0	
Section Size (mm)	200-406	76	
	> 406	0	
Concrete Cover (mm)	25 - 48	-	
Concrete Strength (Mpa)	24.4 - 44		
	Nos	(4-8)	
Longitudinal bars	Dia of bar (mm)	12-25.5	
Shear R/F	Dia (mm)	(8-10)	
Reinforcement ratio (%)	0.89 - 3.1		
Spacing of shear R/F (mm)	100 -305		
Yield Strength of Steel (Mpa)	444-505		
Applied load (KN)	60-1695		
Fire Curve	ISO 834, ASTM E11	9	

Total number of tests	99		
	Square	96	
Types of column	Rectangular	3	
	FF	58	
End conditions	FP	32	
	PP	9	
Load ratios	<0.4	33	
LUdu Talius	0.4-0.9	66	
	<200	45	
Section Size (mm)	200-406	49	
	> 406	5	
Concrete Cover (mm)	25-64		
Concrete Strength (Mpa)	24.1 - 126		
	Nos	(4-8)	
Longitudinal bars	Dia of bar (mm)	(12-32.5)	
Shear R/F	Dia (mm)	(8-10)	
Reinforcement ratio (%)	0.89 - 4.38		
Spacing of shear R/F (mm)	100 -406		
Yield Strength of Steel (Mpa)	340 -591		
Applied load (KN)	345-4800		
Fire Curve	ISO 834, ASTM E1	19	

10

EN 1992-1-2 Method A

EN 1992-1-2 Method B (158 Tests)

EN 1992-1-2 Method A

AS 3600:2018 Method

ACI Method (165 Tests)

IS 1642 Method (India) (156 Tests)

DBJ/T 15-81 (Chinese Code Method) (102 Tests)

Future work

- The same study will be extended to look into the effect of various parameters such as size, shape, r/f ratio, cover, strength, etc.
- The prediction of the model will be assessed based on the statistical equations.
- A detailed FEM model with a layer for thermal analysis, 500°C isothermal or zone method will be used to predict the FRR.

Observations

- The Eurocode Method is comparatively good in predicting FRR up to 4 hr while Method B is up to 150 min.
- DBJ/T 15-81 method is quite good for the old database on which the Eurocode equation was developed.
- ACI and IS 1642 methods they both under predicting the FRR for the new dataset.
- There is a need to revise the equations/table/guidelines present in the code as most of them are developed based on the old database, it is recommended to consider the new test database.

Thanks

Any questions or suggestions?