

Mitigation and Mechanism Study of Fire Spalling of Concrete with Recycled Tyre Fibres

Yifan Li

Kypros Pilakoutas, Shan-Shan Huang

Katherine A. Cashell, Stefano Dal Pont, Alessandro Tengattini

12.05.2023

Why recycled tyre fibres?

Waste tyres and recycled fibres

- Every year, **1.5 billion waste tyres** produced globally
- In Europe, **3.5 million tons** of waste tyres
- In each tyre, 15 % steel and 5 % polymer
- Compared with virgin fibre, only ~ 10 % of the embedded carbon for recycled fibre

Annual used tyres in Europe

Source: https://www.etrma.org/

Fibre properties

Properties	Density (kg/m³)	Tensile strength (MPa)	Melting point (°C)	Length (mm)	Diameter (mm)
Virgin Steel Fibre	7800	1225		60	0.75
RTSF	7800	2000		15 - 35	0.16 - 0.35
Virgin PP Fibre	910		160	12	0.032
RTPF	500		230 - 250	0.8 - 16	0.008 - 0.06

Virgin steel fibre

Recycled tyre steel fibre (RTSF) Virg

Virgin PP fibre

Recycled tyre polymer fibre (RTPF)

Are recycled fibres effective in controlling fire spalling?

Fire spalling test setup

Test Conditions	
Load ratio to compressive strength (%)	30 / 10
Load type	Uniaxial compression
Heat curve	ISO 834 Standard curve
Exposure face	One-sided exposure
Exposure time (min)	30
Maximum surface temperature (°C)	830

Specimen list

Specimen type	Name	Fibre dosage of 30kg/m ³	Stainless steel grade	Cover depth (mm)	Repeats	Concrete	Name	RTPF dosage	PPF dosage	Loading	Pressure	Thermo	28-day Compressive	Test day compressive	
	S1		1.4401	30	1	age		(kg/m ³)	(kg/m ³)	(%)	gauge	Tree	Strength	strength	
	S2	Virgin steel	1.4401	30	3			()	((/0/			(MPa)	(MPa)	
	S3	RTSF	1.4401	30	3	6 years	PC_a			30		yes	48.6	61	
Slab	S4		1.4401	15	1		PC b			30		yes			
	S5	RTSF	1.4401	15	3		R2 a	2		30		ves	49.4	59	
	S6		1.4462	30	1		R2 h	2		30		ves			
	S7	RTSF	1.4462	30	1			-		20	Noc	yes	50.5		
	S8		1.4462	15	1					50	yes	yes			
Column	C1		1.4401	30	1	4 months	PC_d			10	yes		58.6	64.2	
	C2	Virgin	1.4401	30	2		PC_e			10					
	C3	RTSF	1.4401	30	2		R1_a	1		30	yes		58.8	62.5	
	C4		1.4401	15	1		R1_b	1		10	yes	yes			
	C6		1.4462	30	1		R2_c	2		10	yes	yes	51.8	55.1	
	C7	RTSF	1.4462	30	2		2	V1_a		1	10	yes	yes		
	68		1 4462	15	1		V1 h		1	10	Vec		51.3	54.6	

Table 1: Test group for virgin steel fibre vs. RTSF

Table 2: Test group for virgin PP fibre vs. RTPF

Specimen layout

Slab specimen

Column specimen

Group 1: virgin steel fibre vs. RTSF

Group 2: virgin PP fibre vs. RTPF

Spalling test in progress

Spalling test result: virgin steel fibre vs RTSF

Plain concrete

Virgin steel fibre

RTSF

C7

Spalling test result analysis

150 200 250 300 Centre width (mm)

Spalling test result: virgin PP fibre vs RTPF

Plain concrete

Virgin PP fibre

RTPF

Spalling test result analysis

Spalling test result analysis

Sample name	Surface moisture content (%)	Deep Moisture content (%)	Peak pore pressure (kPa)	First spalling time (min)	Number of Spalling	Spalling Weight Ioss (kg)	Maximum spalling depth (mm)	Average spalling depth (mm)
PC_a	2.7	4 5		08:40	5	9.46	37.1	26.6
PC_b	3.7	4.5		06:40	2	2.25	16.9	6.3
R2_a	2.4							
R2_b	3.1	4.4						
PC_c			70	13:30	1	3.02	14.9	8.8
PC_d	5.6	7.7	140	11:10	50	10.6	53	31.9
PC_e				14:10	72	11.15	46.5	33.9
R1_a		8.1	210	13:00	6	6.1	31.7	18.3
R1_b	4.6		170	11:20	12	7.6	38.2	23.4
R2_c	4.6	8.6	120	10:30	12	9.27	48	27.8
V1_a		7.1	410					
V1_b	5.4		610					

- Cylindrical specimens for moisture content
- Cut at 25 and 50 mm
- Side surface sealed
- Cast, cured and dried in the same condition

Conclusions

Group 1:

Group 2:

- Both virgin steel fibre and RTSF are effective to mitigate fire spalling at 30 kg/m³
- Spalling are more severe in large slabs compared to columns
- The use of duplex stainless rebar could delay spalling time

- Virgin PP fibre are the most effective fibre for mitigating fire spalling at low dosage of 1 kg/m³
- RTPF is less effective but still offers some benefits

What is the mechanism of fire spalling? And the role of polymer fibres?

Mechanism of fire spalling

Thermo-hydral mechanism

Thermo-mechanical mechanism

However, lack of experimental data on:

- Presence of moisture clog
- Moisture distribution
- Porous structure investigation
- Influence of fibres on both mechanisms

Source: Jin-Cheng Liu, Kang Hai Tana, Yao Yao, 2018 doi.org/10.1016/j.conbuildmat.2018.06.204

Investigation methods of heated concrete with fibres

• SEM

Investigation methods of heated concrete with fibres

• PTM (pressure, temperature, mass loss)

Pore pressure measurement

- The peak pressure on other specimens is below 0.2 MPa
- The spalling stops the pressure increase further
- Pressure peaked at melting

Investigation methods of heated concrete with fibres

• Permeability after 200 ° C heating

Measured using cylindrical specimens with grinded surface to remove the cement layer.

The post heating permeability was measured when concrete cooled naturally.

Air permeability coefficient (m²)								
Sample name	PC	R2	R1	V1				
Before heating	8.26E-17	6.34E-17	6.76E-17	6.80E-17				
After heating	2.45E-16	1.66E-16	2.01E-16	5.98E-16				

Melting of virgin PP fibre increase the permeability, un-melted RTPF controlled the thermal crack.

Investigation methods of heated concrete with fibres

• Neutron and X-ray tomographies

Neutron sensitive for moisture X-ray sensity for pore structure

Test setup of neutron and X-ray tomographies

Moisture profile of heated concrete

Moisture profile analysis

Average grey value map indicating the moisture change in heated concrete.

Zero means no difference in moisture compared to the initial state.

Positive value means water accumulation, negative value means water drying

Pore structure of heated concrete

Conclusions

- Pore pressure is not the only cause of fire spalling
- The acting mechanism for PP fibre and RTPF could be different
- The presence of moisture clog is confirmed
- RTPF can increase the drying speed of heated concrete without melting
- Polymer fibre can increase the porosity of concrete

Future work

- Optimize the fibre dosages and fibre types in concrete for enhanced fire resistance
- With development of technology, higher-resolution X-ray topography is recommended to investigate the influence of fibres on mesopores and micropores of concrete at more intensive heating curve.

Thank you!