Structural Fire Modelling Strategies for Exposed Mass Timber Compartments and Experimental

Gaps for Model Validation

Guest Presentation by for Mr. Ethan Philion who cannot be here:

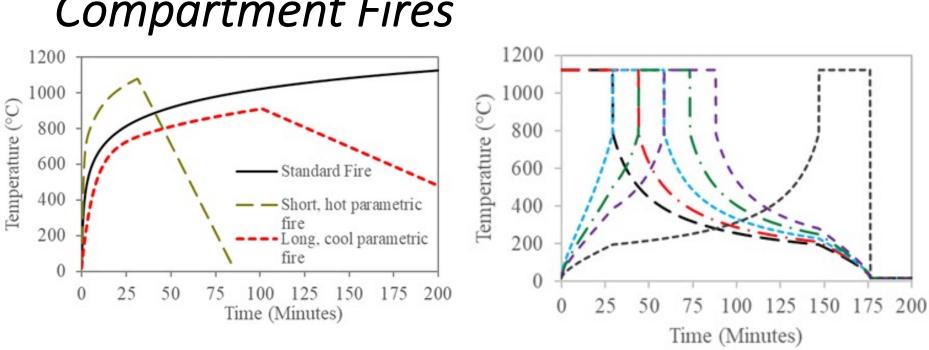
Harry Mitchell Imperial College London

PhD Student, Hazelab, Imperial College London

Presentation Authors: Ethan Philion, Bronwyn Chorlton, Panos Kotsovinos and John Gales

Motivation

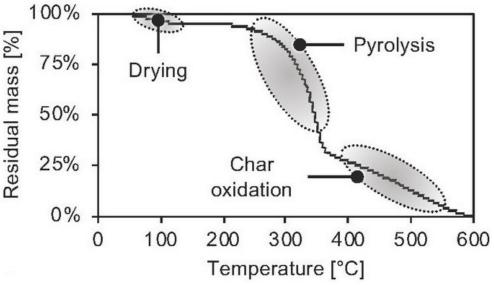
[1]


Timber is increasingly becoming a popular structural material promoted by its perceived sustainability and structural benefits.

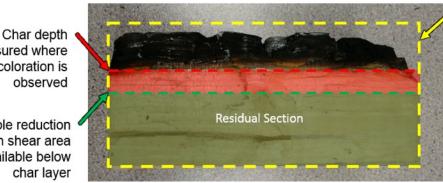
Motivation

Architectural desire to expose the timber elements due to health benefits and biophilia

[3]

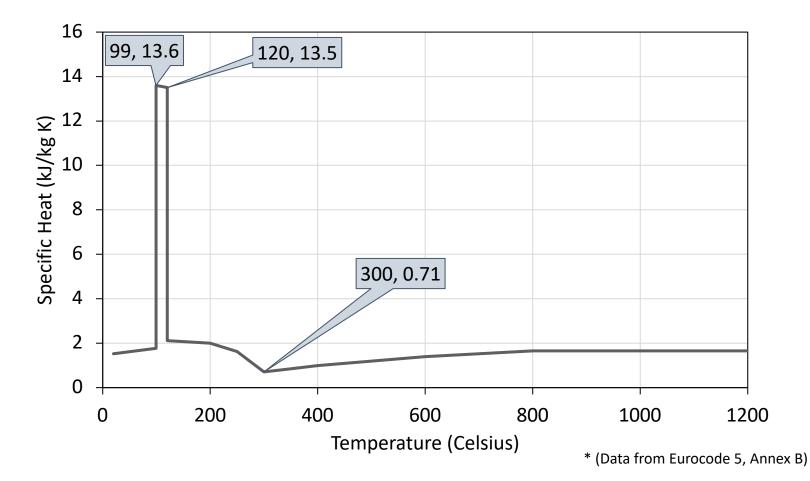


Compartment Fires


- Standard fire curves are **not representative of real fires**
 - Parametric curves have been proposed to address different intensities and the • cooling phase
 - Large compartments may experience a localized fire traveling through the • compartment

Timber at Elevated Temperatures

- Timber undergoes pyrolysis at high temperatures which alters the composition of the material
- Pyrolysis is what produces the gasses which lead to **flaming combustion**
- Char is typically formed at 300 °C, damage to wood occurs at 50°C


Original dimensions of shear area

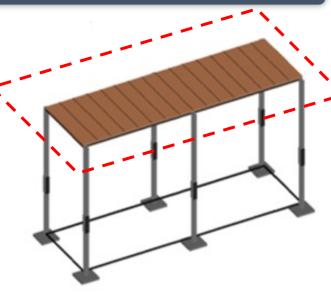
measured where discoloration is observed

Possible reduction in shear area available below char layer

Accounting for Moisture

Smouldering

Current State of Timber Modelling

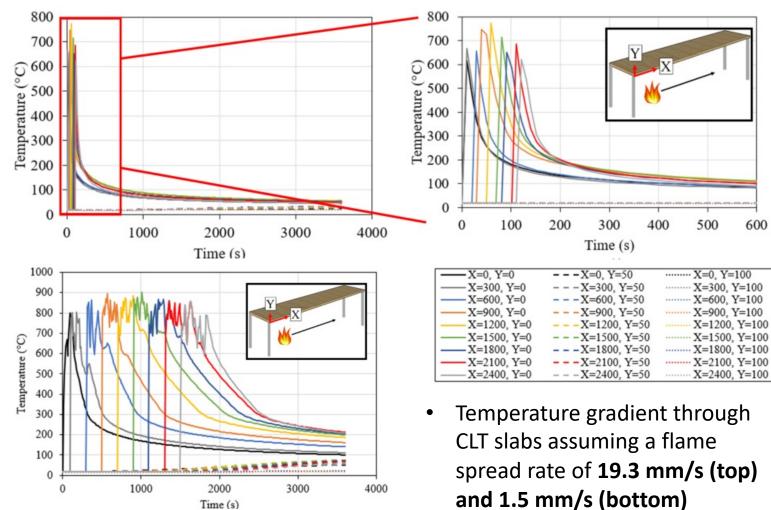

Торіс	Thermal Model	Mechanical Model	Pyrolysis	Moisture (Specific Heat)	Moisture (Latent Heat)	Smouldering
# of papers	10	5	5	7	2	2

- 11 papers primarily since 2017 have referred to timber modelling
- 1 paper was not a numerical model for timber, rather it was a semi-probabilistic model of CLT

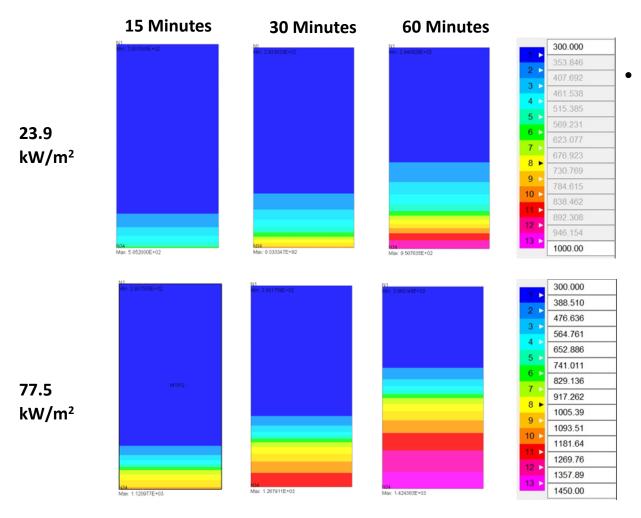
Development of an A Priori Model

Key Notes:

- LS-Dyna was used as the solver
- Mesh size of 3 mm was used
- Ceiling strip is 0.5 m x 0.1 m x 2.4 m
- Delamination was assumed to not occur

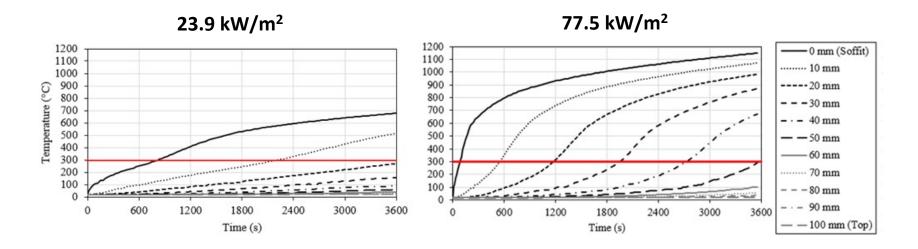

- Heat produced from the timber burning was not accounted for
- Little data was available for flame spread and incident heat flux values
 - Flame spread range is based on crib fires in large compartments
- Model was validated against a glulam experiment and a heritage timber experiment

Model char depths were within 3.5% and 3.7% of the experimental results respectfully


Development of an A Priori Model

Parameter	Value	Source
Moisture content of CLT	8%	Williams (1999)
Emissivity of timber	0.8	Eurocode 5
Coefficient of heat transfer	25 W/m²K	Eurocode 1 Part 1-2
Mesh size of elements	3 mm	Through a sensitivity analysis with comparison to Menis (2012) and Thi et al. (2017)
Incident heat flux	Lower: 23.9 kW/m ² Upper: 77.5 kW/m ²	Tewarson and Pion (1976) Petrella (1979)
CLT dimensions	0.5 m x 0.1 m x 2.4 m	Selected as it can be replicated in future experiments
Fire spread rates	Lower: 1.5 mm/s Upper: 19.3 mm/s	Rackauskaite et al. (2015) and Kirby et al. (1999)
Trailing edge rate	Lower: 1.17 mm/s Upper: 19 mm/s	Heidari et al (2020)

Results



Results

Temperature distributions throughout the CLT when exposed to **different applied heat fluxes**

Results


 Temperature distributions throughout the CLT when exposed to different applied heat fluxes

Conclusions

- Current best practices leave thermal models inaccurate
- To better calibrate models several datasets are recommended to be collected:
 - Char rates at extreme heat fluxes
 - Heat flux produced by the timber (flaming and smouldering combustion)
 - Incident heat flux at floor level
- Stronger understanding of the burnout and extinction criteria of timber

York University Fire Research

is needed

For more information

Research Team Website: www.yorkufire.ca

jgales@yorku.ca

Follow us on twitter @galesfiresafety

Questions

ARUP

Panos.Kotsovinos@arup.com

Image Credits

[1]Acton Ostry Architects. (2022). Limberlost Place. https://www.actonostry.ca/project/george-brown-college-the-arbour/

[2] Remi Network. (2016, August 22). *Construction milestone for UBC Brock Commons*. Retrieved January 27, 2022, from https://www.reminetwork.com/articles/construction-milestone-for-ubc-brock-commons/

[3] Hufton and Crow. (2022). Blue-Sky Thinking. Architecture Today. https://architecturetoday.co.uk/blue-sky-thinking/