Acceptability criteria of fire – how big and how much is ok $(\pounds/\$/\$)$?

Edinburgh, 19th April 2018

Dr David Rush Miss Erin Mills The BRE Centre for Fire Safety Engineering University of Edinburgh

Context

- Prescription \rightarrow PBD
 - General engineering trend in UK and worldwide
 - Case by case basis setting of performance objectives
 - What is acceptable?
 - What is expected?
 - Prescriptive codes
 - implicit level of safety and acceptability
 - Experience provides consensus on what is expected
 - <u>PBD</u>
 - Explicit statements of objectives and acceptability criteria

What we know - losses

- Guidelines emphasis on life safety \bullet
 - Property protection and business continuity rarely explicitly considered
- Geneva association indirect and direct losses of \bullet fire (estimates - 2008-2010)
 - Generalised not specific for an industry of use type of the structures
 - Direct direct result of damage from fire
 - Indirect longer term impact

	Direct	%GDP	Indirect	%GDP
UK	£1.8Bn	0.13	£250M	0.008
US	\$15bn	0.10	\$2Bn	0.007
Germany	€2.8Bn	0.12	€630M	0.014

6-12% of direct

Is this ok?

UK spends £3.3Bn/yr on fire protection (2.5% of building cost, 0.23% of GDP) Is this acceptable?

Resilience (engineering concept) "the ability to sense

"the ability to sense, recognize, adapt, and absorb variations, changes, disturbances, disruptions and surprises"

how much damage is "ok"?;
 how long to recover?

Factors affecting public opinion

- Four main factors (Petersen et al 2016)
 - 1. Disaster experience
 - Experience \rightarrow better expectations
 - 2. Information
 - Less well informed greater expectations
 - 3. Demographics
 - Age, socio-economic status, gender, etc..
 - 4. Culture
 - Norms and practices can influence preparedness and response

What we did

- Gathered publics expectations of fire resilience of home/work
 - Online surveys
 - assess factors (mainly 1 and 3)
 - Determine appropriate resilience timeframes
 - Estimate the expected indirect losses
- Surveys
 - Standard set of qs about demographics and fire history
 - Qs abut home ownership, employment status and location
 - Qs about length of disruption for three fixed levels of loss of functionality (10%, 20%, 50% loss)

Participation stats

Residential – 169 respondents

-95% confidence in results with a $\pm 8\%$ error

- $\approx 50/50$ split in
 - Gender
 - Owned/Rented
 - Flat/House
- Good distribution and response rate

workplace – 69 respondents

Age

Employment Status

Results (1) – All Resi.

• Distance of relocation (no of miles)

NOTE: All data is 2 weeks old, still fine tuning the analyses

5%ile - 0.7 miles;
50%ile - 3.5 miles;

- 95%ile 14.3 miles
- £0.15 £4.86 / day extra assuming round trip to work extra distance.

Results (2) – All Resi.

Days out of home

Frequency of Responses with Distribution

Frequency of Response with Distribution

- Comparison
 - All lognormal but with shifting location and flattening of shape

	5%ile	50%ile	95%ile
10%	2.5	13.6	75.7
20%	4.3	20	92.6
50%	10.5	50.4	243.5

Results (3) – All Resi.

Days back to normality

Frequency of Responses with Distribution

Comparison
 All lognormal

100

140

120

100

80

60

40

20

Ó

Frequency

 1.5 - 2.0 times days out of home

200

300

Number of Days

400

500

Frequency of Responses with Distribution

	5%ile	50%ile	95%ile
10%	4.9	26.7	144.4
20%	8.5	39.3	182
50%	18	86	408

20%

600

Resilience expectations

Damaging

Event

Didn't ask what level of functionality required to come back into home, however looks as though the more damage – greater acceptance of returning to live in a less functional home

Results (4) – All Resi.

Days off work

Frequency of Responses with Distribution

120 20% 100 80 Frequency 60 40 20 0 45 75 15 30 60 90 Number of Days

Frequency of Responses with Distribution

- Comparison

 All lognormal
 - 10-20% of days out of home

	5%ile	50%ile	95%ile
10%	0.18	2.78	14.97
20%	0.4	3.8	17.1
50%	1.1	6.9	28.8

Π

Results (5)

Where to stay

Analysis (1)

Costs		
Hotel	60	£/night
B&B	40	£/night
Caravan	20	£/night
Friends/Relatives House	0	£/night
Other:		
Rented Accomodation	40	£/night
Other owned property	0	£/night
Petrol	119.96	p/litre
Diesel	123.58	p/litre
Salary	27271	£/year
	74.7150685	£/day

- Estimates will need refining in the future
- Can now be used to examine indirect costs

Analysis (2) - Indirect loss

- Total cost of each percentile =
- [((Miles relocated x journeys made per day)/Average miles per litre of fuel) x £ per litre] + [Days out of home x cost of accommodation]+ [Daily salary x days off work]

Analysis (3) - Total expected indirect losses

 Combination of estimated costs and percentages relocation locations

- Data from Fire incident meta-analysis (Manes and Rush 2017) – cost of residential fires based on area damaged
 - Directs Approx £15k
 - **Indirects** of $6-12\% = \pm 0.9k \pm 1.8k$
- Our estimates are slightly on the low side of band
 - only considering residential fires?
 - Estimates too low for costings?

RE 0 entre for Fire Safety Ēn gineering, University of ш dinburg

Does fire experience change perception?

10 of participants had experience of a residential fire

Makes no difference to responses ullet

Π

Does gender change perception?

- 71/98 male female response ratio
- Similar trend to fire experience in terms of day estimations
- Slight variances in where they would stay

Does age change perception?

- Yes in Days out of home and back to full \bullet functionality
- No miles from home and time off work ullet

Π

RE

Centre

for

Fire

Safety

University

of ш

Conclusions (Resi.)

- Lots of analysis on the data still to do but..
 - Able to quantify expected timeframes after a fire in terms of
 - Days off work
 - Days out of home
 - Days back to full functionality
 - All for different levels of lost functionality
 - Able to stick numbers on resilience triangles
- Using coarse estimates of costs
 - Able to show that expected indirects are about 6-12% of direct costs
- Gender and fire experience have no affect on expectations
 - Age does youth have speedier expectations

Thanks

If you have any queries – please do not hesitate to contact me d.rush@ed.ac.uk

BRE

Centre

for