Imperial College London

Validation of Models for Structural Steel Cables in Fire

Francesca Lugaresi, Athina Atalioti, Adam Sadowski Neil McSwiney, Panos Kotsovinos, Guillermo Rein December 2018

LPG Tanker accident on highway bypass 6th August 2018 Bologna, Italy

Cable Geometries

Assembled with High-strength wires cold drawn from carbon steel

WIRE

STRAND

Bundle of wires

Spiral Strand rope

Locked Coil rope

Degradation of Mechanical Properties

Prestressing steel wires – same manufacturing process

Zhang et al. (2017)

Structures in Fire

Contact and Air Gap model - Assumptions

Bundle of wires or strands – Lumped NO

Convection across air cavity neglected Cavities are small and movement of air is restricted by viscous force.

Contact and air gap model - Boundary

Contact and air gap model – Internal

Contact and air gap model – Internal

Conduction across air gap

Contact and Air Gap model - Assumptions

Mechanism	Assumption	Bennetts et al. (2009)	Main & Luecke (2010)	Quiel et al. (2015b)	CAG model
Conduction	Lumped	\checkmark	×	\checkmark	×
	Gradient	×	\checkmark	×	\checkmark
	Contact	×	×	×	\checkmark
Convection	Air gap	×	×	×	×
	Boundary	\checkmark	×	\checkmark	\checkmark
Radiation	Air gap	\checkmark	×	\checkmark	\checkmark
	Boundary	\checkmark	×	\checkmark	\checkmark
Heating	Uniform	\checkmark	\checkmark	×	\checkmark
	Asymmetric /local	×	\checkmark	\checkmark	\checkmark

One-at-a-time Sensitivity Analysis

Linear temperature gradient Input parameters $\Delta \overline{T_y} = \frac{T_{max} - T_{min}}{H}$ T_{min} **Output function** $F = \max \Delta \overline{T_{\nu}}(t)$ Η У T_{max} Х $\uparrow \uparrow \uparrow$

Input Parameters

Material Parameters			Heat Transfer Parameters		
(7)			(5)		
Poisson ratio steel	v [-]	-	Convective coefficient	h [W/m².K]	
Elastic modulus steel	E [GPa]		Incident Heat Flux	q" [W/m²]	
Conductivity steel	k(t) [W/m.K]		Temperature smoke	T_{∞} [K]	
Heat capacity steel	c _p (t) [j/kg.K}		Contact width	w [m]	
Density steel	ρ [kg/m³]		Contact force (self-weight)	F [N]	
Emissivity steel	ε[-]				
Conductivity air	k _a [W/m.K]				

Total of 12 Input parameters!

Sensitivity Analysis Results

Output function F = max $\Delta \overline{T_{v}}(t)$

Experimental Data

Asymmetric Heating

Validating the Model

Validating the Model

Bridge Deck

Coupled thermal and mechanical response Scenario 2 – Asymmetric Heating

Summary of Key Points

- Created a code that automates model (software ABAQUS)
- Performed a sensitivity analysis and identified governing parameters
- Validate model with available experimental data
- Model can be used to analyze different fire scenarios and obtain a realistic prediction of temperature and mechanical response

Thank you !

ARUP

Conduction Across Contact

Contact width

$$\Delta = \left(\frac{1-\nu^2}{E}\right) - \text{effective modulus}$$
$$A_c = 2b = \sqrt{\frac{8F\Delta D}{L\pi}}$$

Contact resistance

$$R_{s} = \frac{1}{\pi L k_{s}} \ln \left(\frac{2D}{b}\right) - \frac{1}{2L k_{s}}$$

(McGee et al. 1986)

