

Damage assessment, residual cyclic behaviour and repair of fire-exposed reinforced concrete columns

Preliminary experimental results from fire resistance & residual cyclic loading tests

Jose Melo^{1,2,3}, Zafiris Triantafyllidis¹, David Rush¹, Luke Bisby¹ and Tiziana Rossetto²

¹ BRE Centre for Fire Safety Engineering, University of Edinburgh, UK
 ² EPICentre, University College London, UK
 ³ School of Engineering (FEUP), University of Porto, Portugal

Structures in Fire Forum, University of Warwick, 10 December 2018

- Challenging RISK project:
 - "It aims to produce new knowledge on the performance of <u>existing</u> reinforced concrete structures subjected to earthquake and fire hazards and to develop an integrated framework for performance-based assessment and structural mitigation."

- Focus of this particular study:
 - Experimental assessment of the residual cyclic response of fire-damaged RC columns
 - Effectiveness of FRP confinement (wrapping) in repairing and retrofitting fire-damaged RC columns

WNIVERS.

THE UNIVERSITY of EDINBURGH

- Property protection, performance-based requirements against multiple hazards, structural resilience...:
 - ...are become increasingly important and popular for buildings and infrastructure
- RC structures historically considered to perform well in fires and in most cases can be repaired for reoccupation/reuse
- Relatively little information in literature regarding damage assessment, repair & strengthening of fire-exposed structures:
 - Typically it covers repairs with shotcrete/RC jackets
 - Post-fire residual structural performance in seismic events and the repair effectiveness remain unknown

Fire design of concrete structures – structural behaviour and assessment

Objectives:

- Expose full-scale RC column specimens to quantifiable fire intensities in furnace tests
- Assess damage and residual structural behaviour under cyclic lateral loading
- Investigate effectiveness of FRP confinement as a retrofitting technique for fire-damaged concrete

Test	Matrix:

#	Test ID	Fire exposure	Repair scheme before residual cyclic test		
1	С	No	No repair		
2	C-S	No	FRP wrapping		
3	M30	30 mins ISO834	No repair		
4	M30-S	30 mins ISO834	Repair mortar & FRP wrapping		
5	L90	90 mins ISO834	No repair		
6	L90-S	90 mins ISO834	Repair mortar & FRP wrapping		
7	L90-2	90 mins ISO834	N/A		

Test specimen details

NR UNIVERSITE

- Flexure-dominate columns
- Axially loaded cantilevers; cyclic lateral load applied at the tip
- Designed according to pre-1970s Portuguese code (no seismic design provisions):
 - Representative of typical old RC columns that may require retrofit in seismic areas
 - Intentionally low strength concrete (C20/25)
 - 1% longitudinal reinforcement ratio (8 Ø12mm)
 - Low shear reinforcement ratio (Ø6mm at 150mm spacing)
- First heated *unloaded* in the furnace, then tested under constant axial load and cyclic lateral load
 - Load application and fixity ends protected with ceramic blanket insulation (50mm thick) to prevent premature failure during the structural test

- Tests took place in a vertical furnace at the University of Aveiro in Portugal, then taken to University of Porto for structural testing
 - Test durations of either 30 or 90 mins to ISO 834, then left to cool down naturally
 - Temperatures were monitored until furnace was opened 24 hrs after the test

Visual observations after 30 min fire test

Visual observations after 90 min fire test

1 day after test:

- Extensive crazing
- Heavily cracked corners
- More extended whitishgrey concrete zones
- Very localised spalling at corners

Visual observations after 90 min fire test

4 days after test:

- ~1-2cm of outer concrete layer flaked and popped off:
 - limestone aggregates (and calcium carbonates in cement) turned into calcium oxide at ~825°C
 - Upon rehydration after the fire test, the CaO aggregations react with water to form to Ca(OH)₂, they crumble/disintegrate and fall off

Class of damage	Element	Surface appearance of concrete			Structural condition			
		Condition of plaster/finish	Colour	Crazing	Spalling	Exposure and condition of main reinforcement*	Cracks	Deflection/ distortion
0	Any	Unaffected or beyon	d extent of fire			STATISTICS OF		
1	Column	Some peeling	Normal	Slight	Minor	None exposed	None	None
2	Column	Substantial loss	Pink/red**	Moderate	Localised to corners	Up to 25% exposed, none buckled	None	None
3	Column	Total loss	Pink/red** Whitish grey***	Extensive	Considerable to corners	Up to 50% exposed, not more than one bar buckled	Minor	None 30 min
4	Column	Destroyed	Whitish grey***	Surface lost	Almost all surface spalled	Over 50% exposed, more than one bar buckled	Major	Any distortion 90 min

Notes

* In the case of beams and columns the main reinforcement should be presumed to be in the corners unless other information exists

** Pink/red discolouration is due to oxidation of ferric salts in aggregates and is not always present and seldom in calcareous aggregate, see Section 2.2.2

*** White-grey discolouration due to calcination of calcareous components of cement matrix and (where present) calcareous or flint aggregate

Source: Concrete Society TR68 (2008)

Table 8 Initial repair classification.

Class of damage	Repair classification	Repair requirements
0	Decoration	Redecoration if required
1	Superficial	Superficial repair of slight damage not needing fabric reinforcement
2	General repair	Non-structural or minor structural repair restoring cover to reinforcement where this has been partly lost.
3	Principal repair	Strengthening repair reinforced in accordance with the load carrying requirement of the member. Concrete and reinforcement strength may be significantly reduced requiring check by design procedure
4	Major repair	Major strengthening repair with original concrete and reinforcement written down to zero strength, or demolition and recasting

Source: Concrete Society TR68 (2008)

"Concrete not structurally useful after heating in temperatures in excess of 550°C-600°C"

(Concrete Society Technical Report No. 68)

Max temperature @Section A-A (¼-model FEM results)

Weak concrete removed:

Repair & Strengthening by CFRP wrapping

A CONTRACTOR OF A CONTRACTOR O

- Damaged section reinstated with structural repair mortar
 - Only corners for 30-min
 - Whole cover for 90-min

- Wrapped with 3 layers of unidirectional CFRP
 - 300 g/m² fabric, high strength carbon fibres
 - Over full column length

Cyclic test setup

Lateral displacement (mm)

Failure modes: unwrapped specimens

Control column (no fire damage)

90min ISO834 column

- Plastic deformation spread over larger length;
- larger buckled length of rebars due to stirrup opening;
- concrete core completely damaged

The wrap confines concrete, allows it to reach larger compressive strains and delays rebar buckling by acting in hoop tension
hence: larger rotations of the plastic hinge ⇒ enhanced ductility & energy absorption

Flexural cracks between transverse unidirectional carbon fibres

Bulging due to middle rebar buckling

*Test stopped before the wrap reached its ultimate tensile (hoop) strain

Results summary and comparisons

- Just an overview of experimental programme presented, work still in progress...
- Tests showed that exposure to fire of increasing fire intensity results in greater reductions in load capacity, ultimate drift and dissipated energy (obviously... :D)
- The tested **FRP repair schemes** were effective in restoring the original load capacity before fire damage, and to **significantly improve ductility and energy dissipation**
- Detailed results, modelling work and project outputs will be presented hopefully in a future StiFF meeting!

Thank you!

Questions?

Acknowledgements:

Engineering and Physical Sciences Research Council

THE UNIVERSITY of EDINBURGH School of Engineering

BRE CENTRE for FIRE SAFETY ENGINEERING

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

