

Structural reliability of temporary aluminium tented structures

9th of April 2019 – IStructE HQ London Tom Molkens

Tented structures

Some examples

Typical cross-section for a 15 m span solution (highly concave sections)

Faculty of Industrial Sciences and Technology, Technology Cluster Construction, Campus De Nayer

Faculty of Industrial Sciences and Technology, Technology Cluster Construction, Campus De Nayer

Outer skin = canvas – softening temperature 200°C, melting @ 250°C Out of tests no fire propagation with local fire, only melting of the canvas +/- 650 gr/m² = 0,0065 kN/m² CARACTERISTIQUES TECHNIQUES / TECHNISCHE DATEN

	Lonnioone Differit		
	Précontraint 502 S2-8604S	Précontraint 702 S2-8604S	Normes / Normen
Fil / Gam	1100 dtex PES HT Traîté anti-capillarité / Anti obcht-ausrüstung	1100 dtex PES HT Traité anti-capillarité <i>l Anti olocht-ausrüstung</i>	TERSUISSE
Poids / Gewicht	590 g/m²	750 g/m²	EN ISO 2286-2
_argeur / Breite Autres laizes disponibles : nous consulter / Andere Breiten auf Anfrag	250/267 cm	250/267 cm	
Résistance rupture (chaina/trame) / <i>Reißkraft (Kette/Schuß</i>)	280/280 daN/5 cm	280/280 daN/5 cm	EN ISO 1421
- Résistance déchirure (chaîne/trame) / <i>Weiterreißkraft (Kette/Schuß</i>)	28/28 daN	30/28 daN	DIN 53.363
Adhérence / <i>Haftung</i>	10/10 daN/5 cm	10/10 daN/5 cm	EN ISO 2411
Finition / Schlußbehendlung	Formule S2 vernis fluoré soudable / Formel S2 fluorklack schweißbar	Formule S2 vernis fluoré soudable / Formel S2 fluorklack schweißbar	
Transmission lumineuse / Lichtdurchläßigkeit	19%	13.5%	NFP 38 511
Réaction au feu <i>i Brennverhalten</i> 502s Translucide i Transluzent	M2/NFP 92-507 • TEST 1/NFPA 701 • 1530.3/AS/NZS • Cla Large scale CAN ULC S109 • Sch	CSFM T19 • CLASSE A/ASTM E84 • B1/I see 1/UNI 9177-87 • M2/UNE 23.727-90 werbrennbar Q1-Tr1/ONORM A 3800-1	DIN 4102-1 • BS 7837 • VKF 5.3 /SN 198898 • G1 /GOST 30244.94
Réaction au feu <i>/ Brennverhalten</i> 7025 Transluckle <i>/ Translucent</i>	M2/NFP 92-507 • TEST 2/NFPA Sitac/Sintef/eta/Sis 650082 • Soi VKF 5.3/SN 198898 • Classe 1/UN	.701 • CSFM T19 • B1 /DIN 4102-1 • BS 7; hwerbrennbar Q1-Tr1/ONORM A 3800-1 19177 • CAN ULCS 109 • CAN ULCS 102	837 • 1530.3/AS/NZS • M2/UNE 23.727-90 • G1/GOST 30244.94
Euroclasse / <i>Euroklasse</i>			B-s2,do /EN 13501-1
Températures extrêmes d'utilisation / Maximale anwendungstemperaturen	-30°C/+70°C	-30°C/+70°C	
Système de management de la qualité / Qualitätsmanagement			ISO 9001

Behaviour in ambient conditions / in case of fire

Codes

European code for temporary and tent structures

- EN13782 (2015): Temporary structures Tents Safety
- Reduction of (snow)loads and fire extinghuisers ...

American code ASCE7-16 allows a decreased design period

• ASCE/SCI 7-16 (2016): Minimum design loads and associated criteria for buildings and other structures

Decreasing the design period = allowing a higher risk of failure. Is this the best practice for a funfair with over to 5000 people in a temporary structure (CC3)?

Aluminium

EN-AW6061_T6, extruded profiles versus steel (as comparison)

• Fire

9

• Transfer from fire in an enclosure to an open fire

Estimation of heat release rate (HRR); EN 1991-1-1 annex E:

- Theatre; $q_{fi,d}$ =365 MJ/m² & t_a=150s
- Fuel-controlled:

$$Q = \left(\frac{t}{t_{\alpha}}\right)^2 \cdot 10^6$$

• Ventilation controlled:

$$Q_{max} = m \cdot H_u \cdot A_v \cdot \sqrt{h_{eq}}$$

• Ozone (max 78% roof opening)

 \rightarrow Worst case scenario = to conservative ?

Nominal fire as reference (ISO and External) & two zone model - Ozone 3.04:

- Influence thin outer skin (1 or 14 cm light masonry and 0,5 mm canvas)
- Double pitch (Δ) do not allow roof openings \rightarrow Beam shape (Π) with same V&O

Faculty of Industrial Sciences and Technology, Technology Cluster Construction, Campus De Nayer

Nominal fire as reference (ISO and External) & two zone model - Ozone 3.04:

- Roof full of circular openings = maximum of $\pi/4$ or 78%
- To verify sensibility a simulation with 26% is also worked out (1/3rd)

- Influence of material becomes irrelevant with roof openings (for metallic structures).
- Minor difference between 26 or 78% of roof openings
- Shifted ISO fire becomes useless

FDS 6.7 model

- Thermocouple devices to control opening outer skin
- Adiabatic on structure
 ^{Therman}
 ^{@ level}
- Thermocouple tree
- Fire load of theatre ^{6,045m} concentrated in wooden beam volume (no fire at the bottom surface)

FDS 6.7 model – results of temperature tree

Fuel-controlled

and

Ventilation-controlled

Faculty of Industrial Sciences and Technology, Technology Cluster Construction, **Campus De Nayer**

KU LEUVEN

Time (min)

• With nominal fires and Ozone \rightarrow EN1999-1-2 with uniform heating

 \rightarrow verification in temperature domain, based on element verification

• Concave sections subjected to 15 min of ISO fire

- \rightarrow geometrical properties ?
- \rightarrow postprocessing ?

• Simplification to a single RHS (with equal geometrical properties)

• Simplification to a double RHS (outer + insert)

Mechanical response

• With nominal fires and Ozone \rightarrow EN1999-1-2 with uniform heating

• Based on element approach

Mechanical response

• Simplification to a single RHS (with equal geometrical properties)

Mechanical response

• Simplification to a double RHS (outer + insert)

Property	Column		Column + insert		Beam			Beam + insert				
	Real	App.	ratio	Real	App.	ratio	Real	App.	ratio	Real	App.	ratio
Surface (mm ²)	3113	2634	0,85	6367	5710	0,90	2254	2004	0,89	4533	4112	0,94
Inertia (cm ⁴)	2719	2464	0,91	5268	5243	1,00	1589	1483	0,93	3145	3055	1,02
Elastic section modulus (cm ³)	201	183	0,91	390	388	1,00	132	124	0,94	262	255	1,04
Plastic section modulus (cm ³)	265	227	0,85	525	488	0.93	171	153	0,90	342	316	0,97

Conclusions

- Small difference in failure time between Ozone and FDS can be explained due to the application of the same HRR, nevertheless a benefit of about 4 minutes could be found.
- The simplification of a section with an insert by the mean of a single section with a higher wall thickness can lead to an overestimation of the fire resistance. The outer part becomes hotter, will fail earlier while the inner part is not anymore capable to withstand the loads.
- A fire resistance of 25 minutes was achieved by the mean of the heat release rate calculated by Ozone (worst case scenario). The application of the EN1991-1-2 formulation will deliver higher rates as the HRR develops slower.

To be continued...

What we're doing together with John Hopkins University (Thomas Gernay)

- Effective stress method to deal with class 4 sections
- Direct coupling between FDS and SAFIR
- Effect thermal creep ?

With Veldeman group and Serge Ferrari?

• Real scale test to find out the "real" HRR and aluminium temperatures

. . .

•