## Behaviour and design of stainless steel tubular members in fire

Asif Mohammed PhD candidate Brunel University London

### **Overview:**

- Background
- Material properties
- Challenges
- Numerical modelling
- Analysis of results and design recommendations
- Concluding remarks

### **Background on stainless steel**

- Widely used
- Family of corrosion resisting materials
- Invented 1912/13
- Nickel and Chromium (e.g. 8% 18%)
- Austenitic, Duplex and Ferritic
- Dominant product forms are cold-formed sections.
- Long design life of structure (>100 years)
- Initial material cost/whole life costs

### **Stainless steel in structural application**



Stainless steel columns, entrance canopy at Seven World Trade Centre, New York (SCI, 2017)



Millennium footbridge, York, UK. Welded duplex sections. (SCI, 2017)

### **Material properties: Stainless steel vs Carbon steel**

Stainless steel Young's modulus and yield strength are broadly similar to carbon steel, but the form of stress-strain curve is fundamentally different



Carbon steel has a sharply defined yield point with a plastic yield plateau (followed later by strain hardening)

Stainless steel exhibits gradually yielding behaviour, with high strain hardening

> Elastic, perfectly plastic model in current design standards

### **Material properties: Elevated temperatures**

- Stainless steel drops its strength and stiffness at elevated temperatures
- Implication on structural fire design



- Stiffness retention factors comparison
- Eurocode 3 states that stainless steel structural members, subjected to high temperatures, must be designed with the same expressions used for carbon steel members. However, as these two materials have different constitutive laws, it should be expected that different formulae for the member stability should be used

### Challenges

- Initial cost
- Instability of the structural elements (columns and beam-columns)
- Efficient design guidelines for stainless steel members.

..... in fire conditions.

### **Numerical modelling-General**

- Powerful tool used in the industry of research and practice.
- Can consider many more scenarios that would be impractical through testing
- Fire testing is extremely costly and time consuming.
- Numerical modelling has been successfully been performed by many researchers.

### **Numerical modelling**

- Software: ABAQUS
- **Element type**: Shell elements, S4R
- Mesh size: Equal to the cross-section thickness, corner had four elements.
- Boundary conditions: Test boundary conditions were replicated by restraining suitable displacement and rotation degrees of freedom of the columns and beam-columns.
- Material modelling: measured material stress-strain curves at elevated temperatures were utilised in the form of true stress and log plastic strain.
- Corner material modelling: For enhanced corner strength in SHS and RHS numerical models, a distance of two times the material thickness was applied.
- Initial geometric imperfections: Introduced in the shape form of the lowest global and local buckling modes obtained from a linear elastic eigenvalue buckling analysis were utilised.
- **Residual stresses**: bending residual stresses were incorporated in the material properties, while membrane residual stresses were neglected, as they have little influence.
- Analysis method: Static method for anisothermal method and Riks method for isothermal method.

#### #1 Stainless steel column in fire

#### Zhao *et al.* (2016); Buchanan *et al.* (2018)

| Cross-section  | Grade      | Length (mm) | Boundary condition | N <sub>u</sub><br>(kN) |
|----------------|------------|-------------|--------------------|------------------------|
| CHS 60.5 × 2.8 | Austenitic | 1450        | Dinned             | 90.5                   |
| CHS 76.3 × 3   | EN 1.4301  | 1450        | Plilled            | 146                    |
| CHS 106 × 3    | A          | 550         |                    | 267                    |
| CHS 106 × 3    | EN 1.4432  | 1150        |                    | 248.8                  |
| CHS 106 × 3    |            | 3080        |                    | 150.8                  |
| CHS 88.9 × 2.6 | D1         | 400         |                    | 425.2                  |
| CHS 88.9 × 2.6 | Duplex     | 1650        | Pinned             | 243.4                  |
| CHS 88.9 × 2.6 | EIN 1.4402 | 3080        |                    | 100.5                  |
| CHS 80 × 1.5   | Es mitis   | 700         |                    | 111.1                  |
| CHS 80 × 1.5   | Ferritic   | 900         |                    | 105.8                  |
| CHS 80 × 1.5   | EIN 1.4312 | 1600        |                    | 77.9                   |

#### Ala-Outinen and Oksanen, (1997); Gardner and Baddoo (2006); Tondini et al. (2013)

| Cross-section          | Grade                 | Length | Boundary  | $\theta_{crit}$ |
|------------------------|-----------------------|--------|-----------|-----------------|
|                        | orado                 | (mm)   | condition | (°C)            |
| SHS 40×40×4-T1         |                       | 888.5  |           | 872             |
| SHS 40×40×4-T2         |                       | 888.5  |           | 579             |
| SHS 40×40×4-T3         | Austenitic            | 888.5  | Dinnad    | 649             |
| SHS 40×40×4-T4         | EN 1.4301             | 888.5  | Fillited  | 710             |
| SHS 40×40×4-T5         |                       | 888.5  |           | 832             |
| SHS 40×40×4-T7         |                       | 888.5  |           | 766             |
| RHS 150×100×6          | Austanitia            | 3400   | Fixed     | 801             |
| RHS 150×75×6           | Austennuc<br>EN 1/201 | 3400   |           | 883             |
| RHS 100×75×6           | LIN 1.4301            | 3400   |           | 806             |
| SHS 80×80×3            | <b>F</b>              | 3000   |           | 709 (1)         |
| SHS 80×80×3            | Ferritic<br>EN 1.4003 | 2500   | Fixed     | 708 (1)         |
| RHS 120×80×3           | 211111000             | 2500   |           | 705 (1)         |
| (1) Critical from a ca | 4                     |        |           |                 |

(1) Critical furnace temperature

#### Anisothermal conditions

#### Isothermal conditions

**Structures in Fire Forum** 

Validation of column numerical models

#### Zhao *et al.* (2016)



Load versus mid-height lateral deflection. CHS 76×3-1450

#### Tondini et al. (2013)



Vertical displacement versus temperature of ferritic SHS 80×80×3-2500 specimen

Failure modes



CHS test and FE model column failure mode.



SHS 80×80×3-2500 specimen Failure mode.

### **Numerical modelling-Validation results**

• Validation of the 23 column numerical models

#### #1 Stainless steel column in fire

#### Zhao et al. (2016); Buchanan et al. (2018)

| Ala-Outinen and C | Oksanen, (199 | 7); Gardner |
|-------------------|---------------|-------------|
| and Baddoo (2     | 2006); Rossi, | (2012)      |

|                     | $\omega_{g} + t/10$     |                                   |
|---------------------|-------------------------|-----------------------------------|
| Specimen reference  | $N_{u,FE} / N_{u,test}$ | $\delta_{u,FE}\!/\delta_{u,test}$ |
| CHS 60.5 × 2.8      | 0.99                    | 1.57                              |
| CHS 76.3 × 3        | 0.99                    | 1.31                              |
| CHS 106 × 3         | 1.07                    | 0.37                              |
| CHS 106 × 3         | 0.91                    | 1.49                              |
| CHS 106 × 3         | 0.96                    | 0.64                              |
| CHS 88.9 × 2.6      | 0.98                    | 0.74                              |
| CHS 88.9 × 2.6      | 1.03                    | 0.74                              |
| CHS 88.9 × 2.6      | 1.06                    | 1.33                              |
| CHS 80 × 1.5        | 1.05                    | 0.53                              |
| CHS 80 × 1.5        | 1.03                    | 0.68                              |
| <u>CHS 80 × 1.5</u> | 1.12                    | 0.65                              |
| Mean                | 1.02                    | 0.91                              |
| COV                 | 0.06                    | 0.46                              |

| Spacimon reference  | Critical temperature (°C) |     |         |  |  |
|---------------------|---------------------------|-----|---------|--|--|
| specifien reference | Test                      | FE  | FE/Test |  |  |
| SHS 40×40×4-T1      | 872                       | 750 | 0.86    |  |  |
| SHS 40×40×4-T2      | 579                       | 502 | 0.87    |  |  |
| SHS 40×40×4-T3      | 649                       | 608 | 0.94    |  |  |
| SHS 40×40×4-T4      | 710                       | 646 | 0.91    |  |  |
| SHS 40×40×4-T5      | 832                       | 722 | 0.87    |  |  |
| SHS 40×40×4-T7      | 766                       | 681 | 0.89    |  |  |
| RHS 150×100×6       | 801                       | 757 | 0.91    |  |  |
| RHS 150×75×6        | 883                       | 814 | 0.92    |  |  |
| RHS 100×75×6        | 806                       | 744 | 0.92    |  |  |
| SHS 80×80×3         | 709                       | 726 | 1.02    |  |  |
| SHS 80×80×3         | 708                       | 718 | 1.02    |  |  |
| RHS 120×80×3        | 705                       | 709 | 1.01    |  |  |
| Mean                |                           |     | 0.93    |  |  |
| COV                 |                           |     | 0.06    |  |  |

### #1 Stainless steel & steel beam-columns in fire

#### Fan *et al.* (2016)

#### Pauli *et al.* (2012)

| Cross-section     | Grade      | Length | Eccentricity | $\theta_{crit}$ |
|-------------------|------------|--------|--------------|-----------------|
|                   |            | (mm)   | (mm)         | (°C)            |
| SHS 100×100×4 (1) | Austenitic | 3300   | 13.2         | 701             |
| SHS 100×100×4 (2) | EN 1.4301  | 3300   | 23.8         | 665             |
|                   |            |        |              |                 |

| Cross spation    | Crada | Length | Temperature | Eccentricity | N <sub>u</sub> |
|------------------|-------|--------|-------------|--------------|----------------|
| Closs-section    | Grade | (mm)   | (°C)        | (mm)         | (kN)           |
| RHS 120×60×4-(1) |       | 850    | 550         | 30           | 96             |
| RHS 120×60×4-(2) |       | 1840   | 400         | 0            | 242            |
| RHS 120×60×4-(3) |       | 1840   | 400         | 10           | 139            |
| RHS 120×60×4-(4) | \$255 | 1840   | 400         | 50           | 73             |
| RHS 120×60×4-(5) | 3333  | 1840   | 550         | 0            | 186            |
| RHS 120×60×4-(6) |       | 1840   | 550         | 10           | 111            |
| RHS 120×60×4-(7) |       | 1840   | 550         | 50           | 49             |
| RHS 120×60×4-(8) |       | 1840   | 700         | 0            | 71             |

Anisothermal conditions Boundary conditions: Pinned-Pinned Isothermal conditions Boundary conditions: Pinned-Pinned







Test and FE failure mode for elevated S355 steel beam-column specimen RHS  $120 \times 60 \times 4$ -(7).

**Structures in Fire Forum** 

### **Numerical modelling – Validation results**

• Validation of the 10 beam-column numerical models

### #1 Stainless steel & steel beam-columns in fire

#### Fan et al. (2016)

| Specimen reference | Critical temperature (°C) |     |         |  |  |
|--------------------|---------------------------|-----|---------|--|--|
|                    | Test                      | FE  | FE/Test |  |  |
| SHS 120x120x4-(1)  | 701                       | 689 | 0.98    |  |  |
| SHS 120x120x4-(2)  | 665                       | 666 | 1.00    |  |  |
| Mean               |                           |     | 0.99    |  |  |
| COV                |                           |     | 0.01    |  |  |

#### Pauli et al. (2012)

| Specimen reference      | Temperature (°C) | N <sub>u.test</sub> (kN) | $N_{u,FE}$ (kN) | $N_{u,test}/N_{u,FE}$ |
|-------------------------|------------------|--------------------------|-----------------|-----------------------|
| RHS 120×60×4-(1)        | 550              | 96                       | 102             | 0.94                  |
| RHS 120×60×4-(2)        | 400              | 242                      | 206.8           | 1.17                  |
| RHS 120×60×4-(3)        | 400              | 139                      | 143.1           | 0.97                  |
| RHS 120×60×4-(4)        | 400              | 73                       | 75.3            | 0.97                  |
| RHS 120×60×4-(5)        | 550              | 186                      | 195.4           | 0.95                  |
| RHS 120×60×4-(6)        | 550              | 111                      | 102.4           | 1.08                  |
| RHS 120×60×4-(7)        | 550              | 49                       | 53.6            | 0.91                  |
| <u>RHS 120×60×4-(8)</u> | 700              | 71                       | 71              | 1.00                  |
| Mean                    |                  |                          |                 | 1.00                  |
| COV                     |                  |                          |                 | 0.08                  |

### **Numerical modelling**

Parametric studies were performed to generate further structural performance data for:

- Stainless steel columns in fire
- Stainless steel beam-column in fire

Modelling parameters:

- Materials: Austenitic, Duplex and Ferritic
- SHS, RHS (Major and Minor) and CHS
- Class 1.
- Temperature range 20 ° C to 800°C
- Global geometric imperfection: L/1000
- Local geometric imperfection b/200 and t/10 in accordance to EN 1993-1-5
- Boundary conditions: Pinned
- Isothermal conditions



### **Buckling curves**

The buckling design (N<sub>b,fi,t,Rd</sub>) for Class 1-3 member at elevated temperature from the Eurocode and Design Manual for Structural Stainless Steel (DMSS):



**Structures in Fire Forum** 

Asif Mohammed

### Analysis of results and discussion





#### Observation

- Data show scatter
- Data sit considerably below the current buckling curve
- Data suggest need for temperature dependent buckling curves

**Structures in Fire Forum** 

Asif Mohammed

### Analysis of results and discussion





#### Observation

- Data show under prediction for stockier columns for low temperatures
- Data sit considerably below the current buckling curve
- Data suggest need for temperature dependent buckling curves

**Structures in Fire Forum** 

### Discussion

Lopes et al. (2010) conducted a numerically study on axially loaded stainless steel welded I-sections in fire and proposed a modified version of the EN 1993-1-2 buckling curve which included:

- 1.  $\beta$  parameter was introduced in the non-dimensional slenderness  $\chi_{fi} \text{ and } \phi_{\theta}$
- 2. Imperfection factor  $\alpha$  was defined as a function of temperature.

Lopes *et al.* (2010)

 $N_{b,fi,t,Rd} = \chi_{fi}Ak_{y,\theta}f_y/\gamma_{mfi}$ 

$$\chi_{\rm fi} = \frac{1}{\varphi_{\theta} + \sqrt{\varphi_{\theta}^2 - \beta \overline{\lambda}_{\theta}^2}} \le 1.0$$

$$\varphi_{\theta} = \frac{1}{2} \left[ 1 + \alpha \overline{\lambda}_{\theta} + \frac{\beta \overline{\lambda}_{\theta}^2}{\beta} \right]$$

$$\alpha = \eta \sqrt{\frac{235}{f_y} \frac{E}{210000}} \ \sqrt{\frac{k_{E,\theta}}{k_{2,\theta}}}$$

$$\bar{\lambda}_{\theta} = \bar{\lambda} \Big[ \frac{k_{y,\theta}}{k_{E,\theta}} \Big]^{0.5}$$

### **Proposal**

- Buckling curves of the same form as Lopes et al. (2010) formulation developed for welded Isection columns in fire were fitted to the normalised FE data for the cold-formed SHS/RHS and CHS stainless steel column generated.
- New β and η parameters were calibrated against the FE data for austenitic, duplex and ferritic stainless steel columns.
- $\beta$  and  $\eta$  parameters for fire design of stainless steel flexural member is presented below.

| Material   | Section | β   | η   |
|------------|---------|-----|-----|
| Austenitic | SHS/RHS | 0.8 | 1.5 |
| Austennic  | CHS     | 0.7 | 1.3 |
| Duplex     | SHS/RHS | 0.8 | 1.1 |
|            | CHS     | 0.8 | 1.0 |
| Ferritic   | SHS/RHS | 1.0 | 0.6 |
|            | CHS     | 1.0 | 0.5 |

### **Results SHS & RHS**



**Structures in Fire Forum** 

Asif Mohammed

### **Results CHS**



**Structures in Fire Forum** 

Asif Mohammed

### Comparison of EN 1993-1-2 (2005), DMSS and proposal

| Material   | $N_{u,FE}/N_{u,pred}$ | EN 1993-1-2 | DMSS | Proposed |
|------------|-----------------------|-------------|------|----------|
|            | No.                   | 361         | 361  | 361      |
|            | Mean                  | 0.93        | 1.08 | 1.12     |
| Austenitic | COV                   | 0.12        | 0.12 | 0.07     |
|            | Max                   | 1.26        | 1.58 | 1.43     |
|            | Min                   | 0.68        | 0.84 | 0.94     |
| Duplex     | No.                   | 327         | 327  | 327      |
|            | Mean                  | 0.94        | 1.07 | 1.08     |
|            | COV                   | 0.14        | 0.11 | 0.07     |
|            | Max                   | 1.21        | 1.53 | 1.27     |
|            | Min                   | 0.64        | 0.79 | 0.87     |
|            | No.                   | 375         | 375  | 375      |
|            | Mean                  | 1.07        | 1.05 | 1.08     |
| Ferritic   | COV                   | 0.08        | 0.09 | 0.06     |
|            | Max                   | 1.30        | 1.30 | 1.25     |
|            | Min                   | 0.80        | 0.83 | 0.92     |

# Comparison between the FE and predicted resistances.

### **Reliability analysis**

- Safety analysis in accordance with the method recommended by Kruppa (1999) were performed to assess the reliability of the existing and proposed design methods to predict the flexural buckling methods of cold-formed stainless steel SHS, RHS and CHS in fire.
- Kruppa set out three distinct reliability criteria methods to compare against theoretical resistance to experimental or numerical results.



► r<sub>ei</sub>

| Material   | Criterion   | EN 1993-1-2 |      | DMSS   |      | Proposed |      |
|------------|-------------|-------------|------|--------|------|----------|------|
|            | Criterion 1 | 40.85%      | Fail | 2.55%  | Fail | 0.00%    | Pass |
| Austenitic | Criterion 2 | 76.45%      | Fail | 37.85% | Fail | 13.85%   | Pass |
|            | Criterion 3 | 0.122       | Fail | -0.03  | Pass | -0.07    | Pass |
|            | Criterion 1 | 28.00%      | Fail | 6.95%  | Fail | 0.00%    | Pass |
| Duplex     | Criterion 2 | 70.00%      | Fail | 30.50% | Fail | 11.50%   | Pass |
|            | Criterion 3 | 0.104       | Fail | -0.03  | Pass | -0.06    | Pass |
|            | Criterion 1 | 4.50%       | Fail | 0.00%  | Pass | 0.00%    | Pass |
| Ferritic   | Criterion 2 | 20.40%      | Fail | 29.75% | Fail | 14.15%   | Pass |
|            | Criterion 3 | -0.05       | Pass | -0.04  | Pass | -0.07    | Pass |

#### Summary of reliability results

### **Concluding remarks**

- A numerical study was performed to investigate the flexural buckling response of stainless steel tubular columns in fire.
- Developed numerical models were validated against test data provided in literature.
- EN 1993-1-2 and Design Manual for Structural Stainless Steel results provide in inaccurate predictions for flexural buckling resistance for stainless steel columns in fire.
- New buckling curves for cold-formed stainless steel tubular columns were proposed on the basis of FE results.
- The suitability of the proposed curves was confirmed by the means of a reliability criteria set out by Kruppa.
- Further numerical studies on beam-columns and potential improvements to the design are underway.
- Improvements to the design expressions can lead to more efficient design, allowing more efficient use of the material, and reduced costs.

Thank you for your attention!