Finding the appropriate complexity to model the charring of timber

Franz Richter and Guillermo Rein Imperial College London

Motivation: Timber

Image from Skidmore, Owings & Merril LLP

Motivation: Timber

Image from Skidmore, Owings & Merril LLP

It is about char

- A structures needs to **maintain its integrity** during a fire
- Char has negligible mechanical strength and increases thermal resistance
- Charring is assumed constant based on the standard fire
- Char forms as a result of heat and pyrolysis chemistry. It **depends** on the **fire.**

Predict the charring behaviour of timber under all fire scenarios

Seestadt Aspern (Vienna), New Civil Engineer 2016

Seestadt Aspern (Vienna), New Civil Engineer 2016

Reszka 2018

Charring: a multi-physics problem

Empirical Model

Computational Model

Empirical Model

- Pen and Paper
- Easy to validate and justify
- Only for specific conditions and geometries
- Inaccurate in unknown conditions

Computational Model

Simplest: Universal Charring Rate

Limitation:

- Chemical composition
- Permeability
- Moisture Content
- Standard Fire
- Semi-infinite solid

Example: Universal Charring Rate

Cachim, P. B., & Franssen, J. M. (2010). Assessment of Eurocode 5 charring rate calculation methods. *Fire Technology*, *46*(1), 169–181.

Empirical Model

- Pen and Paper
- Easy to validate and justify
- Only for specific conditions and geometries
- Inaccurate in unknown conditions

Computational Model

- Computationally Expensive
- Hard to validate and justify
- General
- Accurate in unknown conditions

Complex: Bryden's model

Table 2		
Summary of the equations used	to model solid	phase pyrolysis of wood

Conservation of wood	$\partial \tilde{ ho}_{\mathbf{W}} / \partial t = \dot{\omega}_{\mathbf{W}}$	
Conservation of char	$\partial \tilde{\rho}_{\rm C} / \partial t = \dot{\omega}_{\rm C}$	
Conservation of moisture	$\partial ilde{ ho}_{\mathbf{M}} / \partial t = \dot{\omega}_{\mathbf{M}}$	
Pressure evolution	$\frac{\partial}{\partial t} \left(\frac{\varepsilon f p}{T} \right) + f \frac{\partial}{\partial y} \left(\frac{p}{T} \frac{\phi}{\mu} \frac{\partial p}{\partial y} \right) = R \left(\frac{\dot{\omega}_{\rm V}}{W_{\rm V}} + \frac{\dot{\omega}_{\rm L}}{W_{\rm L}} + \frac{\dot{\omega}_{\rm T}}{W_{\rm T}} \right)$	
Conservation of tar	$\partial (\varepsilon f Y_{\mathrm{T}} \rho_{\mathrm{g}}) / \partial t + f \partial (Y_{\mathrm{T}} G_{\mathrm{g}}) / \partial y = \dot{\omega}_{\mathrm{T}}$	
Conservation of water vapor	$\partial (\varepsilon f Y_{\rm V} \rho_{\rm g}) / \partial t + f \partial (Y_{\rm V} G_{\rm g}) / \partial = \dot{\omega}_{\rm V}$	
Conservation of pyrolysis gases	$\partial (\varepsilon f \rho_{\rm g}) / \partial t + f \partial G_{\rm g} / \partial y = \dot{\omega}_{\rm g}$	
Conservation of energy	$\frac{\partial(\tilde{\rho}_{\mathrm{W}}i_{\mathrm{W}}+\tilde{\rho}_{\mathrm{C}}i_{\mathrm{C}}+\tilde{\rho}_{\mathrm{M}}i_{\mathrm{M}})}{\partial t}+f\frac{\partial((Y_{\mathrm{L}}h_{\mathrm{L}}+Y_{\mathrm{T}}h_{\mathrm{T}}+Y_{\mathrm{V}}h_{\mathrm{V}})\rho_{\mathrm{g}}u)}{\partial y}=f\frac{\partial}{\partial y}\left(\lambda_{\mathrm{eff}}\frac{\partial T}{\partial y}\right)+\sum\Delta h_{i}^{0}\dot{\omega}_{i}$	
Rate of production of wood	$\dot{\omega}_{\mathbf{W}} = -(k_1 + k_2 + k_3)\tilde{ ho}_{\mathbf{W}}$	
Rate of production of char	$\dot{\omega}_{\mathrm{C}} = k_3 \tilde{ ho}_{\mathrm{W}} + \varepsilon f k_5 ho_{\mathrm{T}}$	
Rate of production of moisture	$\dot{\omega}_{ m M} = - k_6 ilde{ ho}_{ m M} + k_7 G_{ m V}$	
Rate of production of tar	$\dot{\omega}_{\mathrm{T}} = k_1 \tilde{ ho}_{\mathrm{W}} - \varepsilon f(k_4 + k_5) Y_{\mathrm{T}} ho_{\mathrm{g}}$	
Rate of production of vapor	$\dot{\omega}_{ m V} = k_6 \tilde{ ho}_{ m M} - k_7 G_{ m V}$	
Rate of production of gas	$\dot{\omega}_{\mathrm{g}} = (k_1 + k_2) \tilde{ ho}_{\mathrm{W}} - \varepsilon f k_5 ho_{\mathrm{T}} + k_6 ho_{\mathrm{M}} - k_7 G_{\mathrm{V}}$	
Heat release rate	$\dot{e} = k_1 \tilde{\rho}_{\rm W} \Delta h_1 + k_2 \tilde{\rho}_{\rm W} \Delta h_2 + k_3 \tilde{\rho}_{\rm W} \Delta h_3 + \varepsilon f k_4 Y_{\rm T} \rho_{\rm g} \Delta h_4 + \varepsilon f k_5 Y_{\rm T} \rho_{\rm g} \Delta h_5 + (k_6 \tilde{\rho}_{\rm M} - k_7 G_{\rm V}) \Delta h_6$	

Bryden, K. M., & Hagge, M. J. (2003). Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. *Fuel*, *82*(13), 1633–1644.

Example: Bryden's model

Bryden, K. M., Ragland, K. W., & Rutland, C. J. (2002). Modeling thermally thick pyrolysis of wood. *Biomass and Bioenergy*, 22(1), 41–53. Bryden KM, Hagge MJ. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel. 2003;82(13):1633–44.

Empirical Model

- Pen and Paper
- Easy to validate and justify
- Only for specific conditions and geometries
- Inaccurate in unknown conditions

Computational Model

- Computational Expensive
- Hard to validate and justify
- General
- Accurate in unknown conditions

Empirical Model

Computational Model

It is about uncertainty

Appropriate level of complexity is determined by experiments

How do we get there?

The current model

Heat Transfer

Experiments: Kashiwagi, Ohlemiller, and Werner (1987)

Code: Gpyro

Solid-Phase: mass, species, and energy

Gas-Phase: mass, species, and momentum

Boundaries: convection & radiation

Properties: Literature

No Calibration

Is the 300 Isotherm conservative?

Is the 300 Isotherm conservative?

Is the 300 Isotherm conservative?

Conclusion

- The appropriate model is neither the most complex or the most simplest.
- We developed a novel model that performs well across scales
- It gives new insight into the strength decay of timber
- Introduced a framework for complexity and uncertainty
- The universal charring rate might be non-conservative under certain heating conditions.

Back – UP Slides

