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Motivation: Timber

Image from Skidmore, Owings & Merril LLP
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Motivation: Timber

Image from Skidmore, Owings & Merril LLPPower Pallet, 2015
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It is about char
• A structures needs to maintain its integrity 
during a fire

• Char has negligible mechanical strength  
and increases thermal resistance

• Charring is assumed constant based on 
the standard fire

• Char forms as a result of heat and pyrolysis 
chemistry. It depends on the fire.

Predict the charring behaviour of timber 
under all fire scenarios

Seestadt Aspern (Vienna), New Civil Engineer 2016

Reszka 2018
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Charring: a multi-physics problem
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Computational Model

Bridge of Complexity
Empirical Model
• Pen and Paper
• Easy to validate and justify
• Only for specific conditions and 

geometries
• Inaccurate in unknown conditions



Simplest: Universal Charring Rate
Limitation:

• Chemical composition
• Permeability
• Moisture Content
• Standard Fire
• Semi-infinite solid

𝑑!"#$ = 𝛽𝑡

Char depth (hr+hc)

Charring Rate

Time



Example: Universal Charring Rate

Cachim, P. B., & Franssen, J. M. (2010). Assessment of Eurocode 5 charring rate calculation 
methods. Fire Technology, 46(1), 169–181. 

• Standard Fire
• Furnace



Computational Model

Bridge of Complexity
Empirical Model
• Pen and Paper
• Easy to validate and justify
• Only for specific conditions and 

geometries
• Inaccurate in unknown conditions

• Computationally Expensive
• Hard to validate and justify
• General
• Accurate in unknown conditions 



Complex: Bryden’s model
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Bryden, K. M., & Hagge, M. J. (2003). Modeling the combined impact of moisture and char 
shrinkage on the pyrolysis of a biomass particle. Fuel, 82(13), 1633–1644. 



Example: Bryden’s model

Bryden, K. M., Ragland, K. W., & Rutland, C. J. (2002). Modeling thermally thick pyrolysis of wood. 
Biomass and Bioenergy, 22(1), 41–53. 

Bryden KM, Hagge MJ. Modeling the combined impact of moisture and char 
shrinkage on the pyrolysis of a biomass particle. Fuel. 2003;82(13):1633–44. 

Constant 
Heat Flux



Computational Model

Bridge of Complexity
Empirical Model
• Pen and Paper
• Easy to validate and justify
• Only for specific conditions and 

geometries
• Inaccurate in unknown conditions

• Computational Expensive
• Hard to validate and justify
• General
• Accurate in unknown conditions 
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Computational 
Model

Bridge of Complexity

Empirical
Model

Appropriate
Model for 
Design?

ØSimple 
ØGeneral



It is about uncertainty

N. Bal and G. Rein 2013.

Appropriate level of 
complexity is 
determined by 
experiments

Appropriate model



How do we get there?

Empirical 
Models

Computational 
Models

Appropriate 
Model

Experiments
Simplifications

Validation

Help understanding



The current model 

Chemistry Heat Transfer

𝑊𝑜𝑜𝑑 𝐶ℎ𝑎𝑟 𝐴𝑠ℎ

+ [O2]

+ [O2] Experiments: Kashiwagi, Ohlemiller, 
and Werner (1987)
Code: Gpyro
Solid-Phase: mass, species, and 
energy
Gas-Phase: mass, species, and 
momentum
Boundaries: convection & radiation
Properties: Literature

No Calibration



Mesoscale (40 kW/m2, inert) 

Experiments: Kashiwagi, Ohlemiller & Werner 1987 21
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Is the 300 Isotherm conservative?

26

Eurocode, 1995
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Is the 300 Isotherm conservative?
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Conclusion
vThe appropriate model is neither 

the most complex or the most 
simplest. 

vWe developed a novel model that 
performs well across scales 

vIt gives new insight into the 
strength decay of timber

vIntroduced a framework for 
complexity and uncertainty

vThe universal charring rate might 
be non-conservative under certain 
heating conditions. 

Metsaewood, 
2016
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