

Part 1. An extended travelling fire method framework with an OpenSees-based integrated tool SIFBuilder (PhD work)

Xu Dai

Authors: Xu Dai, Stephen Welch, Asif Usmani

Part 2. The analysis of the Tisova travelling fire test data (PDRA work)

Xu Dai

Authors: David Rush, Xu Dai, David Lange

HNIVERS HOUSE OF DINBUT

THE UNIVERSITY of EDINBURGH United Kingdom

Fire uncertainties to large spaces architecture for structural design?

World Trade Center Tower 1 in New York City in 2001

(source: https://www.metabunk.org/)

What is a travelling fire?

Lårge acompoftapento kinesating fine inhpædtyo andrueetd tes inokarge nope fil-polarp katæsesvier a tpentiochalf dissign.

Alternative names: moving fires, spreading fires, real fires, natural fires, non-uniform fires...

RE Centre for Fire Safety Engineering

Travelling fire analytical models

Extended Travelling Fire Method (ETFM) framework

An idealised steel composite building with a core

Visualization output of OpenSees-SIFBuilder during heat transfer analysis

Two key input variables for ETFM: fire spread rates, and fuel load densities Travelling fires with changing fuel load densities

BRE Centre for Fire Safety Engineering

Case study using ETFM framework

 420 MJ/m^2

 $600 \text{ MJ}/\text{m}^2$

780 MJ/m^2

Piroghessasohfarfor structural design

(source: adapted from Y. Wang et al., 'Performance-Based Fire Engineering of Structures', 2012)

RE Centre for Fire Safety Engineering

Part 1. An extended travelling fire method framework with an OpenSees-based integrated tool SIFBuilder (PhD work)

Xu Dai

Authors: Xu Dai, Stephen Welch, Asif Usmani

Part 2. The analysis of the Tisova travelling fire test data (PDRA work)

Xu Dai

Authors: David Rush, Xu Dai, David Lange

HNIVERS HOUSE OF DINBUT

THE UNIVERSITY of EDINBURGH United Kingdom

The Tisova Fire Test

- Jan. 2015 Czech Republic
- SP, University of Edinburgh, Imperial College London, Luleå Technical University, and Technical University Ostrava, Majaczech, CSTB and CERIB
- Aim: to generate experimental data on:
 - Travelling fires;
 - Thermal and structural response of composite slabs, concrete slabs, and concrete columns to real fires as an input to round robin studies;
 - As a post-fire assessment of a structure after a quantified fire event

The test building

- Θ **FAURESCREWS EXAMPLE to the descent of the ground floor Total area ca. 230** m²
- O Aliginal 6958 dpane dud post upage fte to on stored ted finith flat slabs
- © Gootingangeust beel-constantion of tocomposite pathets at us theor level fuel, 680MJ/m²

Results of fire

- Didn't burn as ferociously as we would have liked
- The fire spread rate was initially very slow so we closed the window openings and added 10 litres of a 1:1 mix of gasoline / diesel at the red rectangular area

Test building floor plan with TC tree locations

Test building elevation with TC tree locations

					Theorem	ought the build	incling1-f)			
Emberid To a to a to			WHERE T T	1122 212 1 1	1 1 1 1 1 1 1 1 1	A 1111 151 151	1111111	1223 I 123 I	A CONTRACT	- Deriver	
1.1	· e ·	. 4	1.6			·			a	. 8	. 2

Test floor - front view (from drawings in 1958)

TEMPERATURE DISTRIBUTION AT B8

BRE Centre for Fire Safety Engineering

Temperature distribution B8 - Video

TEMPERATURE DISTRIBUTION IN ELEVATION SLICE 11~17 & 8_LERP_18, LERP (Linear interpolation)

Test building floor plan with TC tree locations

Temperature distribution in elevation slice 11~17 & 8_LERP_18, Video

Temperature distribution in elevation slice 11~17 & 8_LERP_18

Temperature distribution in elevation slice 11~17 & 8_LERP_18

Test building elevation with TC tree locations

Test floor - front view (from drawings in 1958)

Test building floor plan with TC tree locations

TEMPERATURE DISTRIBUTION IN ELEVATION SLICE 63~68

BRE Centre for Fire Safety Engineering

BRE Centre for Fire Safety Engineering

Test building elevation with TC tree locations

Test floor - front view (from drawings in 1958)

TEMPERATURE DISTRIBUTION IN ELEVATION SLICE x8s (i.e. TC8, TC18, TC38, TC48, TC58, TC68, TC78, TC88)

Test building floor plan with TC tree locations

BRE Centre for Fire Safety Engineering

Temperature distribution in elevation slice x8s

+

BRE Centre for Fire Safety Engineering

BRE Centre for Fire Safety Engineering

Y case (Shada 199

Discussion: The bottom becomes hotter, due to the near-field approaching/patrol-induced partial flashover. However, why the left two columns of TCs remain such low temperature? (170min is corresponding to video tag "1_2015-01-30_13-29-23" at 13-34-00 time), any fuel left after fire at those two column TCs locations? Note: Higher temperature with more heat retained

BRE Centre for Fire Safety Engineering

BRE Centre for Fire Safety Engineering

Current project

TRAFIR Project Characterization of **TRA**velling **FIR**es in large compartments

Funding from the Research Fund for Coal and Steel (RFCS) - European Commission

Eight work packages (1/07/2017 → 31/12/2020):

- testing (isolated elements and simplified fire progression, as well as a full-scale large compartment)
- modelling (both simplified analytical/phenomenological models and CFD).

Project partners:

