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Requirement Bl: Means of warning and escape
Requirement B2: Internal fire spread (linings)
Requirement B3: Internal fire spread (structure)
Requirement B4: External fire spread

Requirement B5: Access and facilities for the fire service
Regulations: 6(3), 7(2) and 38
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Why should we care?!
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Kotsovinos P, Rackauskaite E, Christensen E, et al. Fire dynamics inside a
large and open-plan compartment with exposed timber ceiling and
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6.9.3 Calculation of flame height

The larger the flame or the surface that is radiating heat,
the larger will be the total heat that is emitted. This
implies that larger flames give larger values of ¢. There-
fore, the estimation of flame heights is a crucial part of the
calculation process.

For most fires away from walls, the plume can be consid-
ered to be axisymmetric. The mean flame height of
luminous flames for fires is given by

z=0.20% (6.55)

where Q, is the total heat output of the fire (kW) and z; is
the mean flame height of the luminous flame (m) (Cox and
Chitty, 1980) (see Figure 6.8).

As an alternative to equation 6.55, the mean flame height
is also given by

z=0.2350" -1.02D; (6.56)

where D; is the fire diameter (m) (SFPE, 2016). If
unknown, the fire diameter may be estimated from the
heat output by assuming an average fire load density and
then calculating the area of burning.

As equations 6.55 and 6.56 do not perfectly agree, the more
conservative choice should be made if there is any doubt.

The above relationships do not apply to hydrocarbon fires.
The calculation of such fires is complex and attention is

T T 7 T 7 1
0.04 0.06 0.08 0.1

2/Q(m - kW 2P)
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Problems with studying the decay phase:
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How do building geometry and materials
Influence outcome?

Thermal properties

Exposed surfaces
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~20 kW/m? feedback from the flame
~4 kW/m? feedback char oxidation

Total feedback around 3 kW/m? during steady state.



Feedback vs. heat released
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30-60% of heat release
IS from char oxidation.
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combustion, and extinction are generally well understood, with good agreement in
the fire science literature over a wade range of experimental conditions for key param-
eters such as critical beat fux for ignition (12 kW/m® + 2 kW/m’) and heat of com-
bustion (17.5 MJ/ke 2.5 MJ/kg). These parameters are key for evaluating the risks
posed by using timber as @ construction material Conversely, extinction conditions
. are less well defined and understood, with crtical mass loss rates for extinetion vary-
34 1 Introduction| ing from 2.5 g/m’ 1o S g/m’s. A detailed meta-analysis of the fire resistance litera-
35 11 Adhesive ture has shown that the rate of burning as characterised by charring rate average
. over the full test duration is observed Lo vary with material properties, in particulr
36 Two typically use density and moisture content which induce 4 maximum 18% !’.m‘.:hllm over the ran.
37  formaldehyde-bas| ed in design. System properties are also shown 1o be important, with
38 selection include : failure resulting in
39 speed, cost, and e: changes (0 the charring rate thal cannot be easily predicted. Finally, the fire exposure
as defined by incident best flux has by far the Largest effect on charring rates over
typical beat fluxes experienced in compartment fires. Current fire design guidance for
engineered timber products is largely prescriptive, relying on fixed “charring rates™
and “zero-strength layers” for structural analyses. and typically prescribing gypsum
scapsulation to prevent or delay the involvement of timber in 4 fire. However, it is
ar that the large body of scientific knowledge that exists can be used to explicitly
address the fire safety issues that the use of timber introduces. However the applics-

31 Keywords: therm)
32 mechanical analy;
33 I-component-poly

such as del tion an

o

lion of this science in real buildings is identified as a key knowledge gap which if
explored, will enable improved efliciencies and innovations in design.

Keywords: Timber, Fire. Pyrotysis, Charring. Fire safety engincering. Building design
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Feedback (kW/m?)

: | Combined

l Flame Oxidation
___________ _contribution, contribution; Peak (steady-state)
20kW/m2 ' 206 ' 4.1 ' 247
25 kW/m2 © 19.9 ' 3.4 233 (2.5)
40 kW/m? . i . 17.6 (2.6)
60 kW/m2 | ; 124 (2.9)
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