

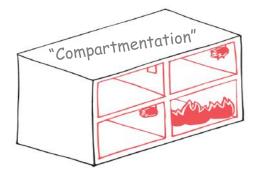
"Simulation of fire spread in large compartments under different ventilation conditions"

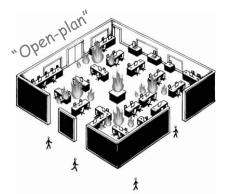
Chang Liu¹, Xiyue M. Ming¹, Xu Dai², **Stephen Welch**^{1,*}

¹School of Engineering, The University of Edinburgh, UK ² School of Engineering, The University of Liverpool, UK

*s.welch@ed.ac.uk

Edinburgh Fire Research Centre


Engineering and



Context – "compartmentation" vs. "Open-plan"

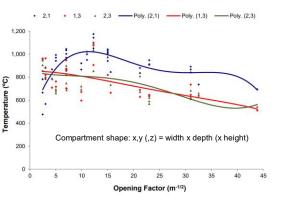
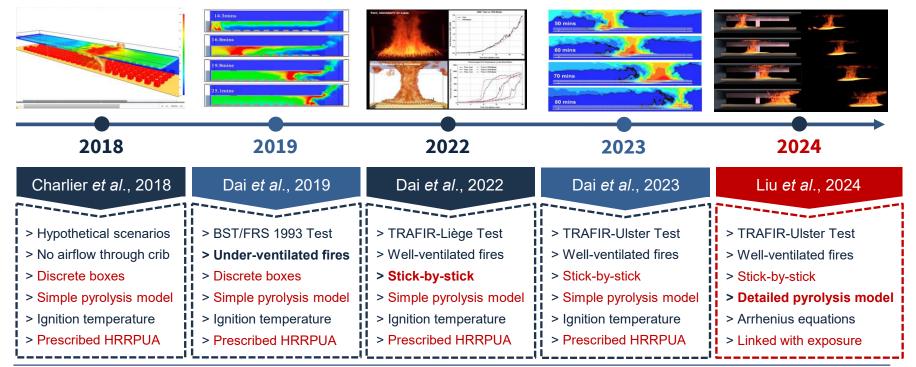


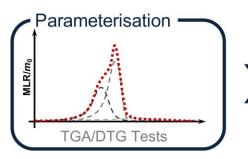
Figure 3-2: Average compartment ceiling temperature for the CIB Tests for crib configurations 2,1 - 1,3 and 2,3, together with their correspondent best-fit lines drawn as 4th grade polynomials.

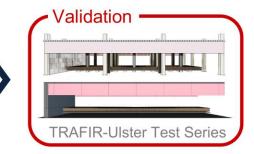
Majdalani, A. (2015) Compartment fire analysis for contemporary architecture PhD thesis, School of Engineering, Uni Edinburgh <u>era.ed.ac.uk/handle/1842/9969</u>

- > Classic compartment fire framework from fire tests in **small, near cubic** compartments
- > Fires in open-plan settings tend to "travel" across compartments
- > Characteristic spatially and temporally varying boundary condition
- > Fire dynamics strongly influenced by ventilation, spanning fuel-controlled & ventilation-controlled fires
- > Complex momentum/fuel bed control in former => no simple theoretical treatments



Numerical Simulators for Travelling Fires – Road Map

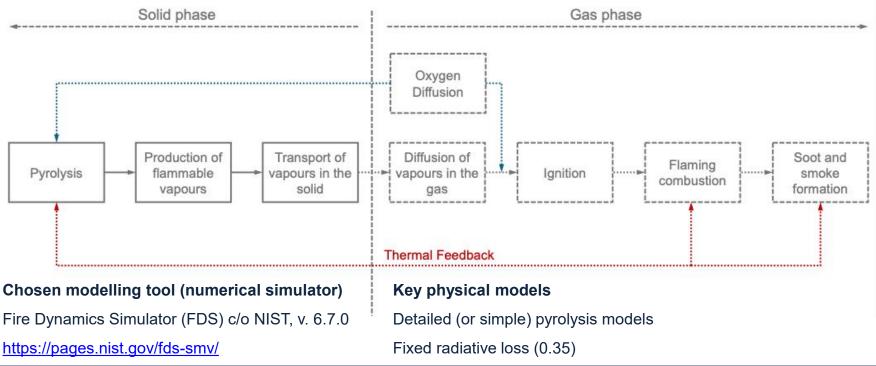




Numerical Simulators for Travelling Fires – Workflow and Strategy

Fuel bed representation and fire growth modelling

- > Discrete boxes
- Stick-by-stick
- > Simple pyrolysis
- Detailed (or complex) pyrolysis
- Detailed pyrolysis
- > Fire spread post-ignition burning rates are now linked to thermal environments
- > Enhanced burning rates due to higher **thermal feedback**
- > Repeated Scaling Up exercise, starting with calibration for isolated crib,
 - >> then translated *predictively* for large compartments



Complex overlapping fire phenomena spanning gas/solid + coupling

Model parameters determination

Parallel Reaction Schemes

Wood Component $i \rightarrow v_{\text{char},i}$ Char + $(1 - v_{\text{char},i})$ Volatiles where:

Wood Component *i* refers to cellulose and hemicellulose and lignin $v_{char,i}$ is the mass fraction of char produced by component *i*

Reaction rates:

Each Component *i* has Arrhenius dependence on temperature, proportional to normalised mass fractions of solid-phase reactants $(Y_{s,i})$:

$$R_i = Y_{s,i}A_i \exp\left(-\frac{E_i}{RT_s}\right) X_{O_2}^{nO_2,i}; Y_{s,i} = \left(\frac{m_{s,i}}{m_s(0)}\right)$$

where:

- A_i is the pre-exponential factor [s⁻¹]
- E_i is the activation energy of solid-phase reactant [kJ mol⁻¹]
- $T_{\rm s}$ is the solid temperature of reactant [K]

 X_{O_2} is oxygen volume fraction [-]

- $m_{s,i}^2$ is the mass of the reactant j [kg]
- $m_{s(0)}$ is the initial mass of wood aggregate [kg]

Table 1. Kinetic parameters for thermal decomposition of spruce used in the model.

		Parameter values (data bounds ^a) for first order reactions						
	$Y_{s,i}(0)$	Ref.	A_i^b	Ref.	$E_i^{\rm b}$	Ref.	Vchar	Ref.
	(-)		(s ⁻¹)		(kJ·mol ⁻¹)		(-)	
Cell. ^c	0.422	[14-18]	8.18×10^{15}	[14-17]	170	[14-17]	0.02	[18]
	(0.38-0.44)		(1013-1015)/N2		(186-236)/N ₂		(0.06 - 0.13)	
			(1016-1017)/Air		(213-221)/Air			
Hemi. ^c	0.230	[14-18]	2.51×10^{6}	[14-17]	88.5	[14-18]	0.15	[18]
	(0.18-0.30)		(10 ⁶)/N ₂		(80-100)/N ₂		(0.19-0.30	
			(10 ⁷)/Air		(100-105)/Air			
Lign. ^c	0.180	[14-18]	4.50×10^{1}	[14-17]	55.0	[14-17]	0.37	[18]
	(0.08-0.23)		$(10^{0}-10^{1})/N_{2}$		(38-46)/N ₂		(0.38-0.44)	
			(103-107)/Air		(66-121)/Air			

^a Values in bracket are extracted from literature using identical reaction schemes with reaction orders set to unity for Norway spruce.
^b Kinetic constants (A_i and E_i) were carefully tuned within the pre-defined boundaries until all the key features associated fire spread at the crib scale has been successfully reproduced.

^c "Cell.", "Hemi.", and "Lign." abbreviate cellulose, hemicellulose and lignin, respectively.

Table 2. Thermo-physica	l properties for spruce an	d char used in the model.
-------------------------	----------------------------	---------------------------

	$\rho_{s,i}$	k _{s.i}	Cs,i	Esi	$H_{r,i}^{c}$	$H_{c,i}^{c}$	
	(kg·m ⁻³)	$(W \cdot m^{-1} \cdot K^{-1})$	(kJ·kg ⁻¹ ·K ⁻¹)	(-)	(kJ·kg ⁻¹)	(MJ·kg ⁻¹)	
Virgin Wood ^a (Cell/Hemi/Lign.)	468	0.13	1.30	0.9	600/900/-1200	12/17/10	
Char ^b	300	0.05 (20°C)	0.66 (20°C)	0.95	n/a	n/a	
		0.07 (380°C)	1.05 (100°C)				
		0.10 (800°C)	1.25 (200°C)				
		0.35 (1200°C)	1.45 (380°C)				
			1.70 (800°C)				

^a Thermal properties for virgin spruce wood at ambient are kept the same with our previous publication [7].

^b Temperature-dependent specific heat and conductivities for spruce-derived char are extracted from [20,21,23] and emissivity from [22], density from [23].

^c Heat of Reaction H_{c_i} and Heat of Combustion H_{c_i} are extracted and adapted from [24] on the same wood species, to ensure that the weighted average values are in line with the literature.

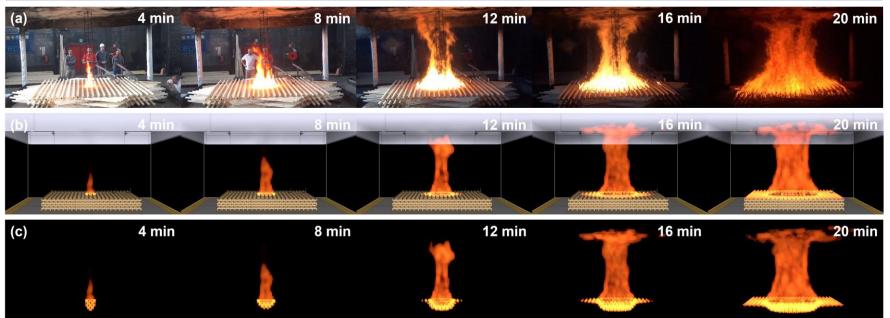


Fig 1 Comparisons of fire spread evolution between LB7 experiment and FDS model for a full-scale isolated wood crib fire test (Gamba *et al.*, 2020) at 4 min time intervals (test images provided by Uni Liège, model images rendered by PyroSim with 200 kW/m³ as HRRPUV cut-off for colouring fires): a) test; b) model; c) model without obstructions

TRAFIR Ulster tests – test 1 "open ventilation conditions"*

TRAFIR Ulster Travelling Fire Test 1, (a) Skewed view, (b) Front view, figures adapted from Nadjai et al. [11].

* Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) "Travelling fire in full scale experimental building subjected to open ventilation conditions", SiF 2020 – 11th Int. Conf. Structures in Fire , University of Queensland, Brisbane, Australia, 30 Nov – 2 Dec 2020 doi:<u>10.14264/987a305</u>

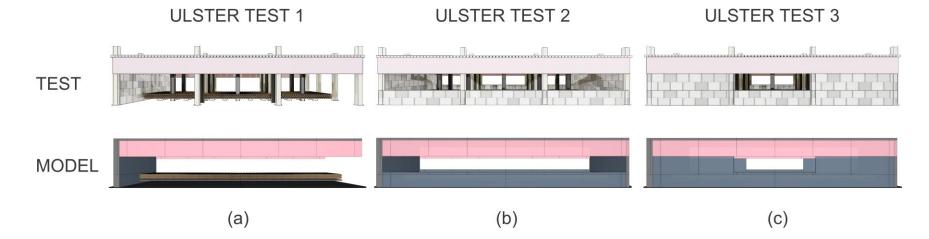
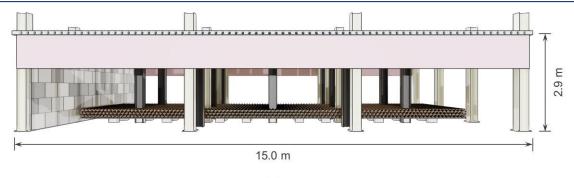


Fig 2 Comparisons of test and model set-up for TRAFIR Ulster Travelling Fire Test Series (Nadjai *et al.*, 2022): a) test 1 (inverse opening factor: 1.6); b) test 2 (inverse opening factor: 8.1); c) test 3 (inverse opening factor: 26.4)



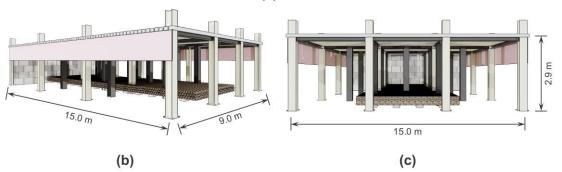


Fig 3 TRAFIR Ulster Travelling Fire Test 1 compartment with dimensions: a) front view; b) skewed view; c) side view.

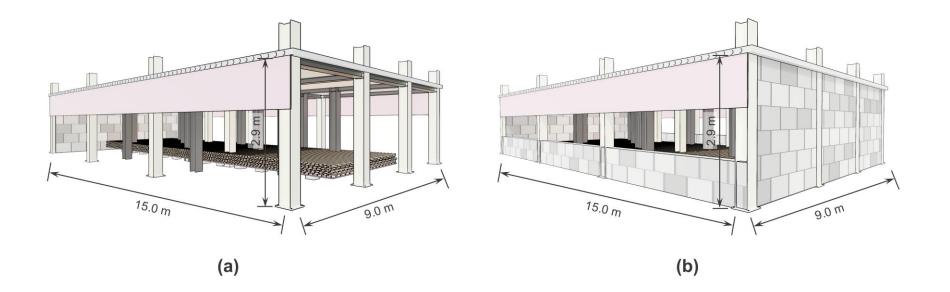


Fig 4 Comparisons of model set-up for TRAFIR Ulster Travelling Fire Test Series (Nadjai *et al.*, 2022): a) test 1 (inverse opening factor: 1.6 – well ventilated); b) test 2 (inverse opening factor: 8.1 - transitional)

vered by EDCC

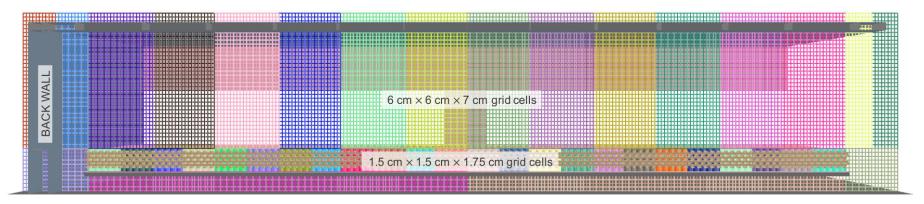
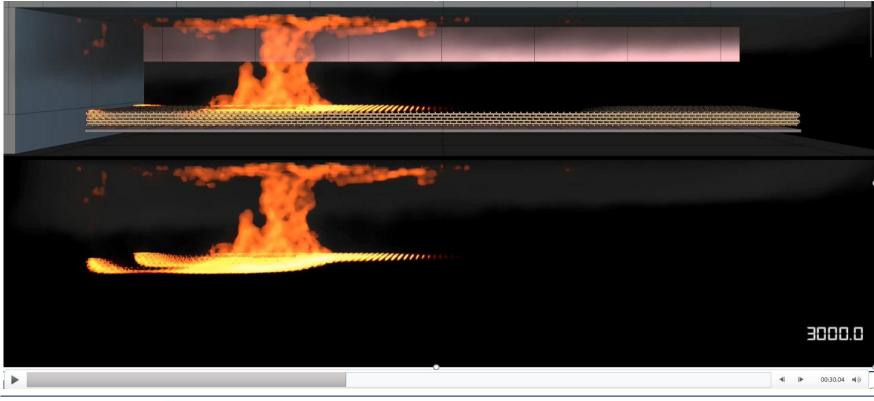


Fig 5 Grid resolution of the scaled-up model: $1.5 \text{ cm} \times 1.5 \text{ cm} \times 1.75 \text{ cm}$ per cell inside the crib, $6.0 \text{ cm} \times 6.0 \text{ cm} \times 7.0 \text{ cm}$ above the crib, 8.3M cells in total running on 248 cores; mesh boundary positioned 4 cells above the crib surface.



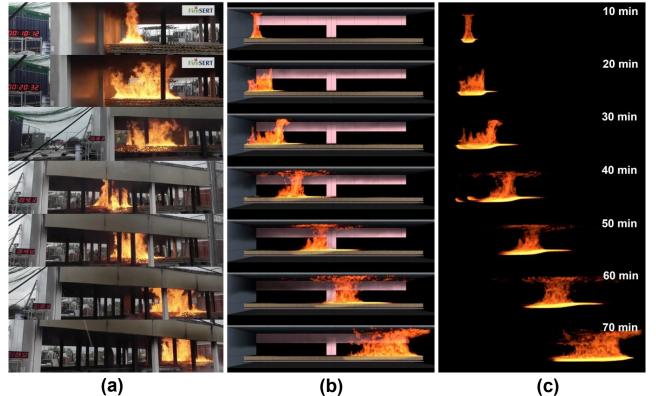


Fig 6 Comparisons of fire spread evolutions between test and model for Ulster Travelling Fire Test 1 at 10 min time intervals (test videos c/o Ulster University, model images rendered by PyroSim with 200 kW/m³ as HRRPUV cut-off for colouring fires): a) test footage;

- b) FDS model prediction;
- c) model without obstructions (obstructions hidden to show fire spread on and inside wood cribs).

КК Г

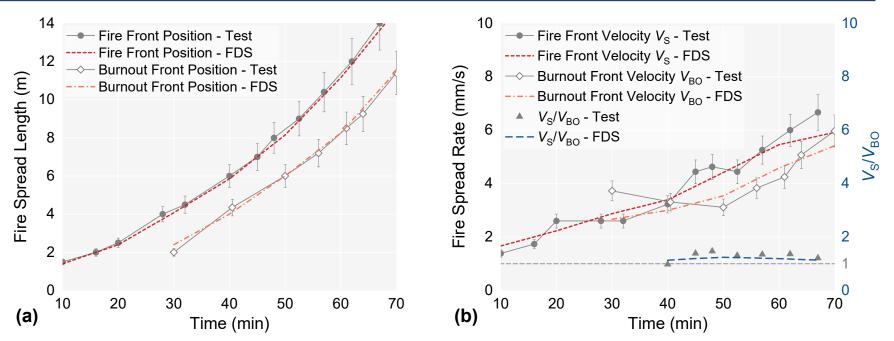


Fig 7 Comparisons of fire spread between test and model at compartment centreline along fire trajectory: a) fire spread length b) fire spread rates and ratio of fire spread rates at fire front to burnout front (V_S/V_{BO}).

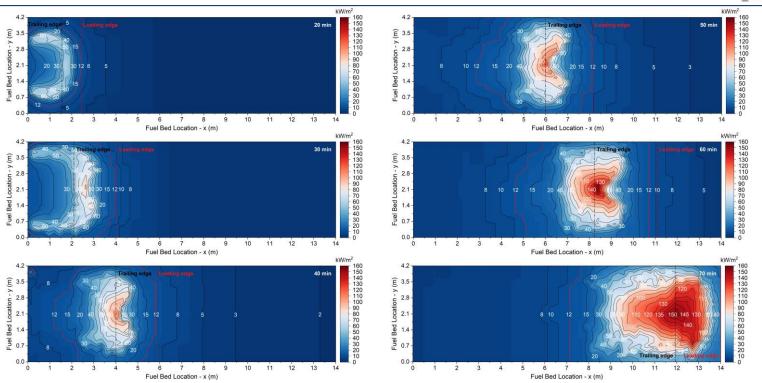


Fig 8 Evolution of incident heat fluxes on fuel bed top layer at 10 min time intervals (heat fluxes in kW/m²)

owered by EDCC

0

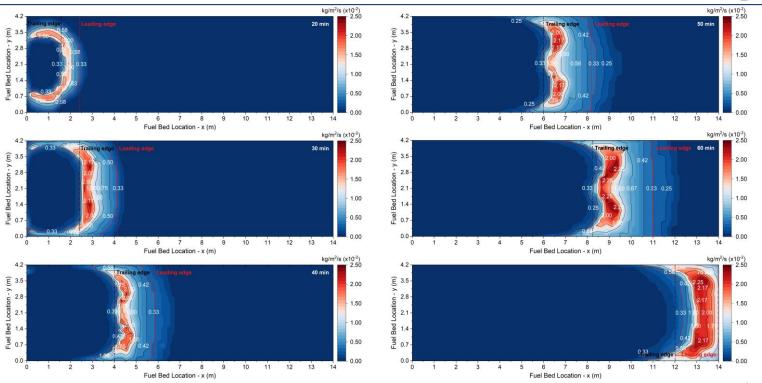


Fig 9 Evolution of instantaneous fuel burning rates of top layer at 10 min time intervals (burning rates in kg/m²/s)

0

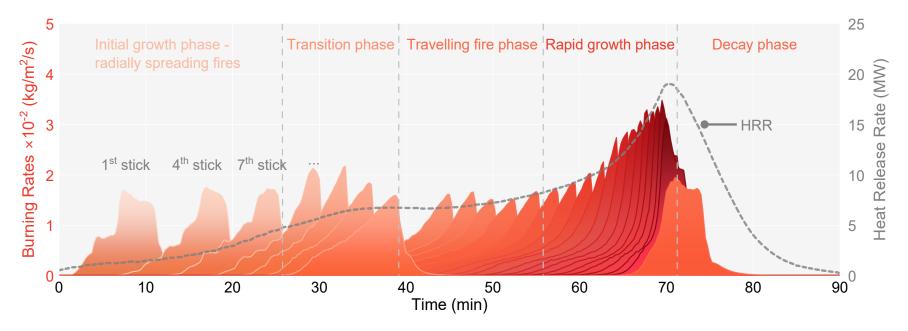


Fig 10 HRR evolution and instantaneous burning rates every 4 sticks along compartment centreline on fuel bed top layer

Some Aspects of the Growth and Spread of Fire in the Open

P. H. THOMAS

Ministry of Technology and Fire Offices' Committee Joint Fire Research Organization

FIRE SPREAD IN EXPERIMENTAL FUEL BEDS, SPREAD IN STILL AIR

It is comparatively recently that attempts have been made to study the spread of fire in laboratory conditions. A large number of experiments in which fire spread through a crib of wood have been conducted by Fons *et al.* (1962) and after his death by Byram *et al.* (1964) in 'Project Fire Model'. They burnt cribs constructed of layers of wood sticks parallel to each other, spaced horizontally a fixed distance apart, each alternate layer having the sticks running at right angles to the layer beneath. Thomas and Simms (1964) and Thomas, Simms, and Wraight (1964) have briefly reported a correlation of such data, with parameters which can be used for other types of fuel beds:

 $\boldsymbol{\sigma}$ is the surface per unit of fuel bed volume

 λ is the volume of voids/surface of solid.

From these definitions it follows that the porosity (the volume of voids per unit of volume) is given by a^{λ}

$$\epsilon = \frac{\sigma\lambda}{1+\sigma\lambda}$$

and for a crib of sticks of size a separated horizontally by a distance s (i.e. s+a between centres).

$$\sigma = 4/a$$
 and $\lambda = s/4$.

* Thomas, P.H. (1965) "Some aspects of the growth and spread of fire in the open", Fire Research Note No. 552 <u>https://publications.iafss.org/publications/frn/552/-1</u>

Equation (13) gives the rate of spread for thin fuels while equations (13) and (15) to (17) give that for thick fuels namely:

$$R \doteq \left(\frac{Q_n'}{2\theta_i}\right)^2 \frac{(1+\sigma\lambda)}{K\rho_{\mathfrak{s}}c_w\sigma}.$$

where Q'_n is the net forward flux allowing for cooling losses

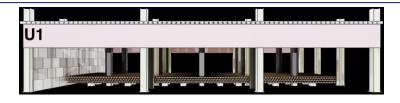
- c_w is the effective specific heat of the moist wood
- θ_i is the temperature rise causing ignition in the presence of flame, taken here as 300° C (Simms, 1963),
- and $\rho_{\mathbf{A}}$ is the mass of wood heated to ignition per unit volume of fuel bed.

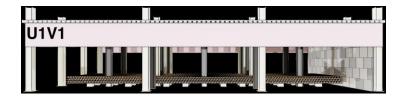
K is the thermal conductivity

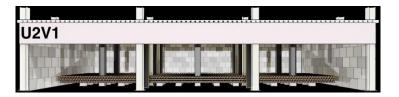
The more detailed theory (Thomas and Simms, 1964) allowing for cooling within the fuel bed gives this as the correct result with

$$\dot{Q}_n^{\prime} = \dot{Q}^{\prime} - 2.67 H \theta_i$$

where \hat{Q}^* is the gross heat transfer flux and H the cooling coefficient. Moreover, the fuller treatment can be used to calculate the theoretical value of Rover the range of stick sizes between thick and thin fuels. The calculations express $R\rho_b c_w/H$ as a function of $H/K\sigma$ and $\hat{Q}^*/H\theta_i$ or any combination of these. Byram *et al.*'s experimental data (excluding those for which $\lambda < 0.8$ cm, which are referred to below), and those of Fons *et al.* are shown in Fig. 7. Both sets are for white fir (*Abies concolor*). The best value of $\hat{Q}^*/H\theta_i$ found by fitting a theoretical line through the data gives a value for \hat{Q}^* of about 6-8 W/cm² according to the choice of H. This value for the gross heat transfer is typical of radiation from a highly emissive burning zone at about 800° C.




Inverse Opening Factor Smallest Largest U1 $1/2\sqrt{1}$ U1V2 --U2- $\phi' = 1.6 \text{ m}^{-0.5}$ $\phi' = 5.8 \text{ m}^{-0.5}$ ----..... - U2V2 U1V1 $\phi' = 2.8 \text{ m}^{-0.5}$ $\phi' = 8.1 \text{ m}^{-0.5}$ (a) Test 1 (15 openings, φ'= 4.1 Test 2 (3 openings, φ'= 23.3) $\phi' = 1.6 \text{ m}^{-0.5}$ $\phi' = 5.8 \text{ m}^{-0.5}$ VENTILATION CONTROL **ULSTER (TRAFIR) ETFT (RFSDTB)** IOF (m^{-0.5}) IOF (m^{-0.5}) Under ventilated ventilated 1000 Well ventilated (U1) 1.6 Temperature (°C) 00 * Transitional (U2) 5.0 8.1 ETFT unrestricted (E11) **E12** * Under ventilated (U3) 26.4 ETFT restricted (E12) 28.5 **J3** 20 Regime I 30 **Regime II** Opening factor $A_T / A_w H^{1/2}$ (m^{-1/2})



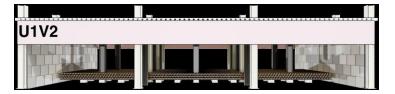


Fig 11 Parametric study on opening factors and areas extended from Ulster TRAFIR Tests 1 and 2 (U1, U2)

Variant	Opening area (m²)	IOF (m ^{-0.5})	Parameter studied	Table 1. Summary of co Candidates for comparisons	Opening Area (Aw) [m ²]	offigurations us Opening Factor (ϕ') $[m^{-0.5}]$	sed for param Main Variables			
U1	15x2x2 + 9x3 = 82.2	1.6	Baseline well ventilated		82.2	1.6	Opening locations	1		
U1V1	82.2	1.6	End wall by fire/distant		82.2 (U1) 57.0 (U1V2)	1.6 (U1)	1.6 (U1)	1.6 (U1)	Opening	
U1V2	57.2	2.8	Two end walls			2.8 (U1V2)	areas	c		
U2	15x1x2 = 30.0	8.1	Baseline transitional		57.0 (U1V2) 30.0 (U2)	2.8 (U1V2) 8.1 (U2)	Opening areas	Т		
U2V1	30.0	5.8	Full side wall/open wall							
U2V2	30.0	5.8	Downstand v upstand		30.0	8.1 (U2) 5.8 (U2V1)	Opening factors	Th		
ETFT 11	17.8x1.5 = 24.8	5.0	Baseline well ventilated							
ETFT 12	(3x1.1)x1.5 = 5.0	28.5	Baseline underventilated		30.0 5.8	5.8	Downstand /upstand	Th up		

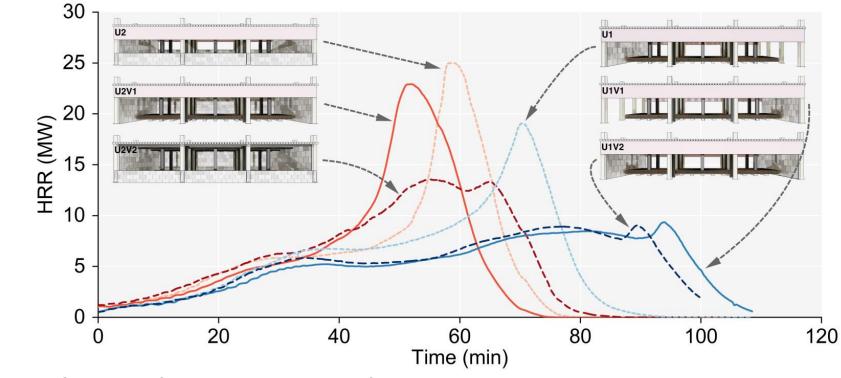


Fig 12 Comparison of heat release rate evolutions for 6 parametric study scenarios

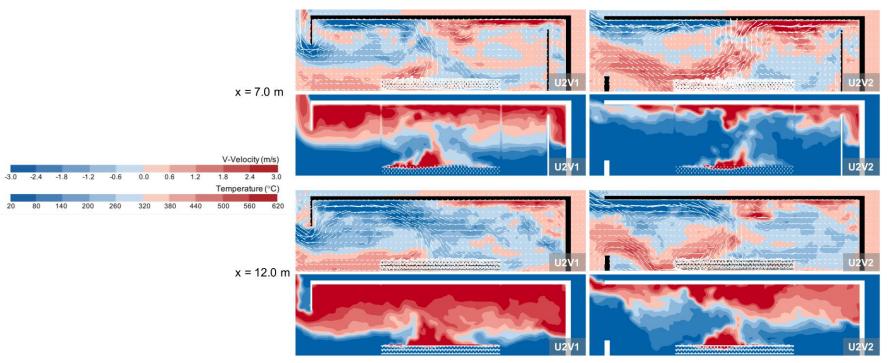
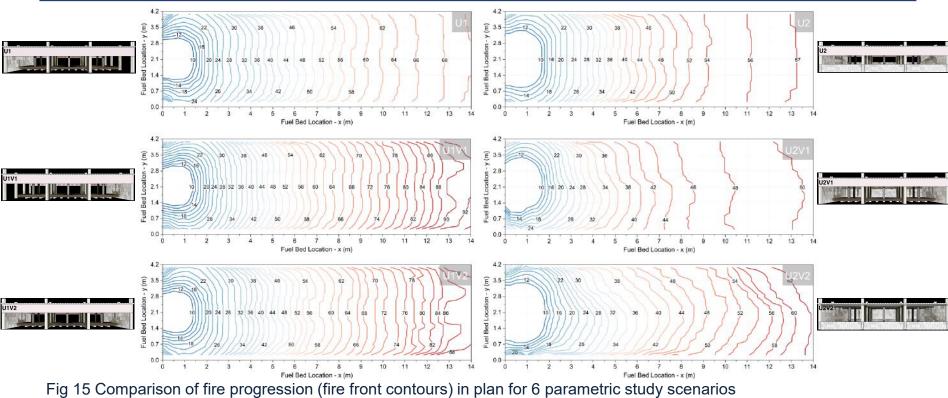



Fig 14 Comparison of "far field" smoke layer temperature and flow development for the U2 variants (downstand/upstand)

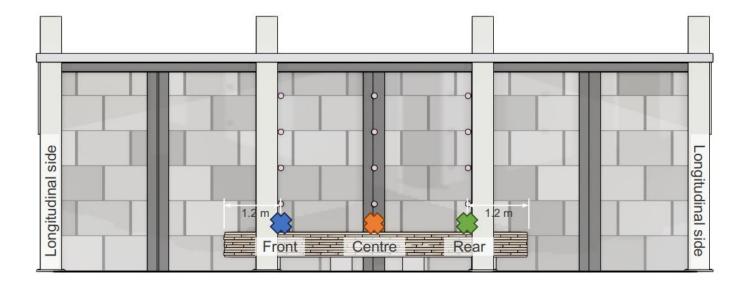


Fig 16 Locations of "front", "centre" & "rear" longitudinal lines on fuel bed surface in right-side view of U1 compartment

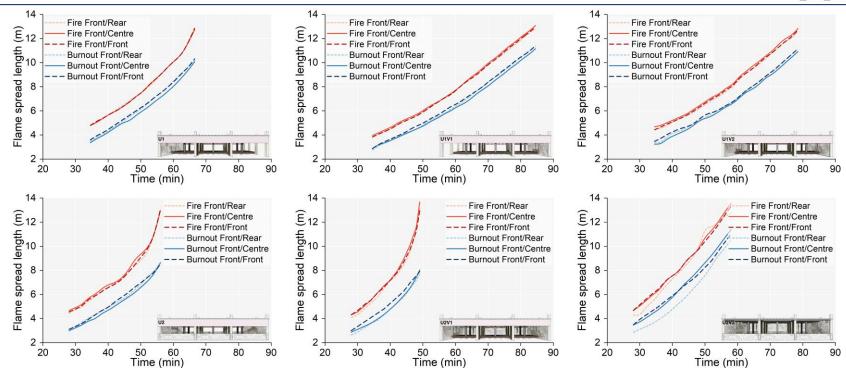


Fig 17 Comparison of fire progression (fire front/burnout front locations across depth) for 6 parametric study scenarios

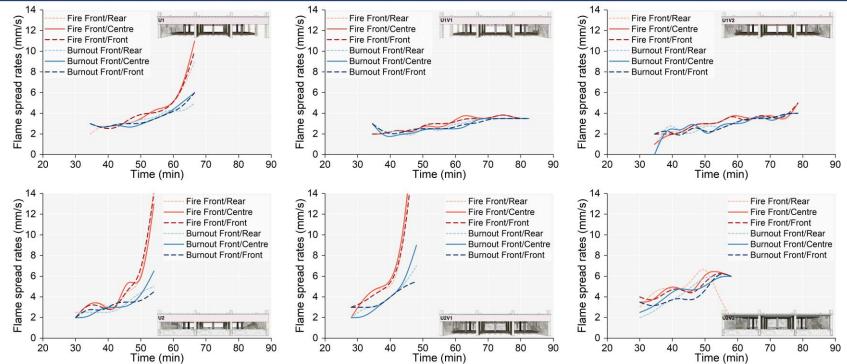


Fig 18 Comparison of fire progression rates (fire front/burnout front locations across depth) for 6 parametric study scenarios

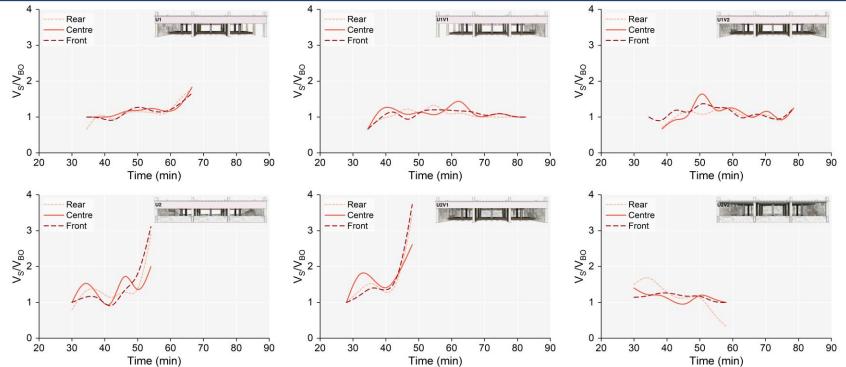


Fig 19 Comparison of fire spread velocity ratios fire (V_s front/V_{bo} burnout front) for 6 parametric study scenarios

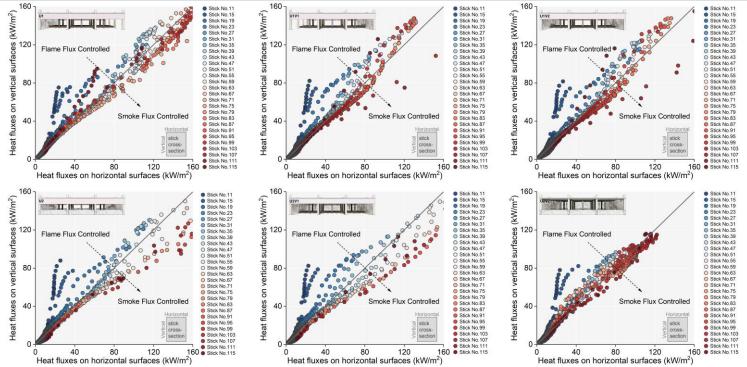


Fig 20 Comparison of heat flux ratios (vertical v horizontal) for 6 parametric study scenarios

(a) Fig 21 Comparisons of fire spread between test and model at compartment centreline along fire trajectory every 10 mins:
 (b) a) Ulster TRAFIR test 1 (well ventilated IOF=1.6 m^{-0.5}) b) Ulster TRAFIR test 2 (transitional IOF=8.1 m^{-0.5})

archer2

Fig 22 Comparisons of fire spread between test and model at Ulster compartment centreline at 50 mins: a) test 1 b) test 2

Fig 23 Instrumentation positions implemented in Ulster test and model:

a) position of thermocouple trees (TRLs) in elevation view;

b) position of thermocouples (TCs and TRLs) and Thin-Skin Calorimeters (TSCs) in plan view (TSCs were all placed on top of fuel bed level, TC 1-6 were placed 20 cm below ceiling, TRL 1-11 are thermocouple trees placed directly above the wood cribs, igniter is shown as red square 1 m away from back wall)

 数

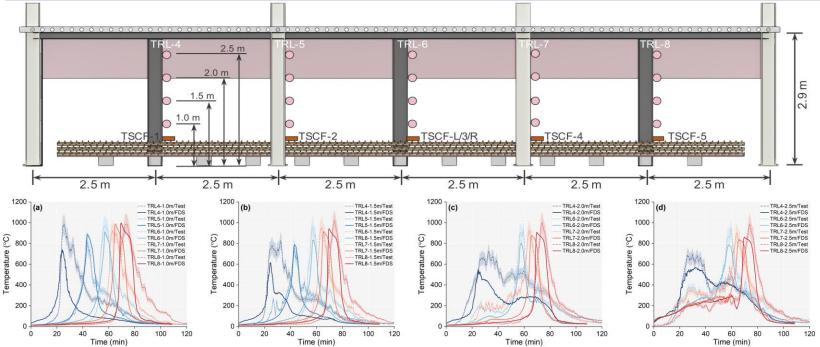


Fig 24 Ulster **Test 1**: Comparison of thermocouple temperatures at compartment centreline along fire trajectory, TRL 4-8 (NB TRL5-2.0 m and 2.5 m malfunctioned due to overheating during data acquisition)

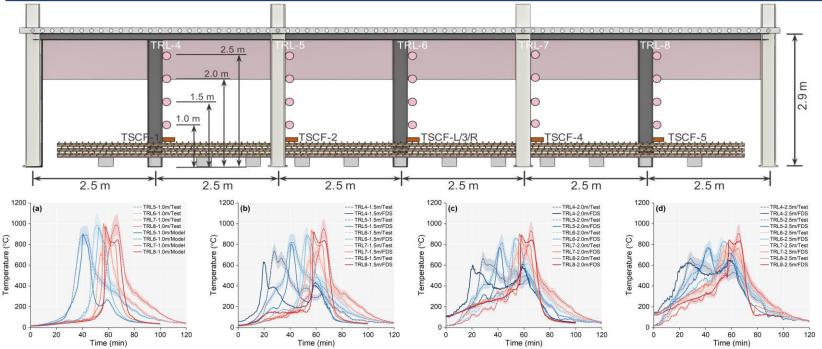


Fig 25 Ulster Test 2: Comparison of thermocouple temperatures at compartment centreline along fire trajectory, TRL 4-8

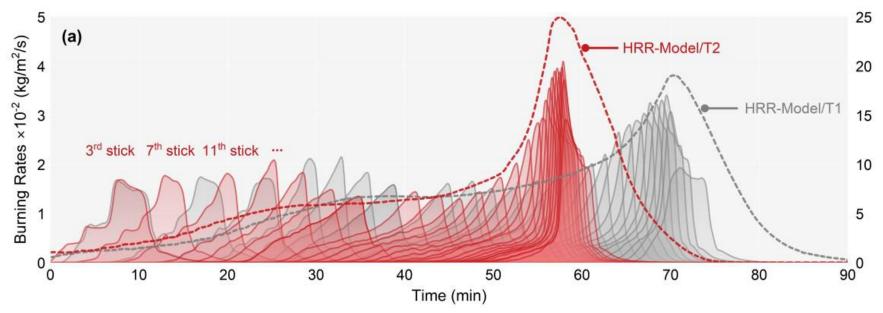


Fig 26 HRR evolution and instantaneous burning rates every 4 sticks along compartment centreline on fuel bed top layer

archer2

Conclusions (1)

> Building on previous work which has demonstrated the possibility of **applying a detailed pyrolysis model** to predict fire spread at both lab- and compartment-scales, via a numerical simulator that provides enhanced representations of wood cribs fuel bed geometry on a detailed "**stick-by-stick**" basis and integrates **condensed-phase pyrolysis processes via multiple parallel reaction pathways**.

> Compared to approaches which consider fire spread primarily in terms of ignition to a new fuel surface, results **relate burning rates to the local fire environment** to gain better understanding of the drivers of fire spread.

- > "Numerical simulator" **gives insights into fire science phenomena**:
 - a) Captures **progression of ignition and burning rates** on each surface of each wood stick
 - b) Demonstrates evolving fuel surface boundary condition arising from **fire plume and hot smoke layer** above it
 - c) Demonstrates evolution of **surface and in-depth burning** within crib as fire progresses in different regimes

> Validation extends to inversion opening factor range 1.6 to 8.1 m^{-0.5}, within the fuel-controlled regime; this opens up new avenues for **performing experiments virtually** within a similar range, enabling the exploration of fire dynamics in ways that would be **impossible or impractical to address through physical tests alone**.

Conclusions (2)

- > Parametric studies in the well-ventilated regime clarifies factors influencing **fire spread and thermal severities**:
 - a) restriction of ventilation tends to supports heat retention and enhances fire spread via pre-heating, resulting in more rapid transition to growing and greater thermal severities;
 - b) proximity of initial fire to solid boundaries supports more rapid spread away from igniter;
 - c) by contrast, burning in vicinity of solid boundaries tends to be suppressed due to lack of oxygen;
 - d) arrangement of openings can have a big impact on fire development due to differences in smoke layer evolution;
 - e) an extreme example is replacing a downstand with an upstand, and consequent reduced thermal severities;
 - f) complex trade offs between layer depth and energy release rates via local limits on oxygen

Hence an overall recognition that:

- > opening factors and/or areas on their own are poor determinants of fire spread drivers (Thomas said!)
- > a clear gain associated with CFD-based numerical simulators
 - o detailed exploration of fire behaviours, potential for unravelling fire spread mechanisms
 - \circ $\:$ see our Interflam and forthcoming IAFSS papers... $\:$

Limitations and further work

> Further study needed of model predictions for **more enclosed scenarios** (higher inverse opening factors):

- a) higher sensitivity to uncertain thermal properties of compartment linings;
- b) extinction models are required for underventilated conditions and remain highly uncertain;
- c) soot yields rise strongly when underventilated and FDS uses a conserved scalar which will be unrepresentative.
- > All of the same considerations apply for applications with timber-lined compartments:
 - a) prediction of time to ignition might be possible using the same detailed pyrolysis model, and variants for other woods;
 - b) the subsequent enhanced heat release rates typically lead directly to the conditions mentioned above;
 - c) great care needed in exercising such models, and challenges in "validation" given the complexities;
 - d) moreover, the inability to represent the heat transfer from glowing embers becomes a more dominant issue.
- > Ultimately provide input to analytical models for structural fire engineering:
 - a) parallel research stream on sensitivities of structural performance;
 - b) significance of concrete/composite slab on structural fire performance
 - (Dr Xu Dai @Uni Liverpool, Dr Zhuojun Nan @TU Delft, etc.)

Acknowledgements: ARCHER2

This work used ARCHER2 via EPSRC Access to HPC

- > Earlier work UKCTRF https://www.ukctrf.com/
- > UK National Supercomputing Service
- > UK's most powerful supercomputer
- > Peak performance 28 PFLOP/s
- > Equalling 250,000 modern laptops
- > 5,860 compute nodes
- > 748,544 CPU cores (128 cores per node)
- > Housed @ EPCC

Acknowledgements: Cirrus

This work used Cirrus UK National Tier-2 HPC Service via

Scottish Academics Access scheme

- > UKRI's EPSRC Tier-2 HPC
- > 368 high-mem compute nodes
- > 13,250 CPU cores (36 cores per node)
- > 4 Nvidia Tesla V100-SXM2-16GB GPUs

> Housed @ EPCC

> Funded by UKRI's **EPSRC**

Acknowledgements:

Fire project students (MEng/IMFSE/SAFE MSc)⁺

13/14 Hongbo Zhen (IMFSE)
15/16 Pei Ying (Penny) Yang (IMFSE)
17/18 Zhuojun Nan (SAFE MSc), Haimin Chen (SAFE MSc)
18/19 Siqi Du (SAFE MSc)
19/20 Chang Liu (SAFE MSc), Yang Xu (SAFE MSc)
20/21 Peter Charley (MEng); Chang A. Liu (SAFE MSc => PhD 22-25)
21/22 Weitian Lu (SAFE MSc), Yanchi Mo (SAFE MSc)
22/23 Bo Gunnarsson (MEng); Qianzhuo Zhou (SAFE MSc)
24/25 Xiyue Ming Ming (MEng)
24/25 Desmond Lou (IMFSE)

- + Research project courses:
- Undergraduate MEng thesis (50 credits)
- IMFSE dissertation (60 credits);
- Structural and Fire Safety Engineering (SAFE) MSc dissertation (90 credits)

Acknowledgements: EU RFCS TRAFIR project

Characterisation of TRAvelling FIRes in large compartments

Industrial led – ArcelorMittal, Luxembourg (1/07/2017 \rightarrow 31/12/2020)

> Testing

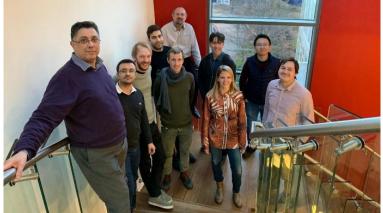
Isolated elements & simplified fire progression, full-scale large compartment

> Modelling

Simplified analytical/phenomenological models and CFD

https://www.researchgate.net/project/TRAFIR-Characterization-of-TRAvelling-FIRes-in-large-compartments

Project partners:



References – journal papers (1)

- 1. Liu, C., Dai, X., Ming, X.M. & Welch, S. (2024) "CFD predictions of fire spread over wood cribs in large open-plan compartments: new insights", Fire Saf. J. invited for Special Issue entitled "The 4th European Symposium on Fire Safety Science" [under review Apr 2025]
- Dai, X., Alam, N., Liu, C., Nadjai, A., Rush, D. & Welch, S. (2024) ""Scaling-up" fire spread on wood cribs to predict a large-scale travelling fire test using CFD", Adv. Eng. Soft. 189: 103589 doi:10.1016/j.advengsoft.2023.103589
- 3. Dai, X., Gamba, A., Liu, C., Anderson, J., Charlier, M., Rush, D. & Welch, S. (2022) "An engineering CFD model for fire spread on wood cribs for travelling fires", Adv. Eng. Soft. 173:103213 doi:10.1016/j.advengsoft.2022.103213
- 4. Nan, Z., Dai, X., Chen, H., Welch, S. & Usmani, A. (2022) "A numerical investigation of 3D structural behavior for steel-composite structures under various travelling fire scenarios", Eng. Struc. 247: 114587 doi:10.1016/j.engstruct.2022.114587
- 5. Nadjai, A., Naveed, A., Charlier, M., Vassart, O., Welch, S., Glorieux, A. & Sjöström, J. (2022) "Large scale fire test: The development of a travelling fire in open ventilation conditions and its influence on the surrounding steel structure", Fire Saf. J. 130:103575 doi:10.1016/j.firesaf.2022.103575
- Nadjai, A., Naveed, A., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2022) "Travelling fire in full scale experimental building subjected to open ventilation conditions", J. Struc. Fire Eng. 14(2): 149-166 doi:10.1108/JSFE-06-2021-0037
- 7. Alam, A., Nadjai, A., Charlier, M., Vassart, O., Welch, S., Sjöström, J. & Dai, X. (2022) "Large scale travelling fire tests with open ventilation conditions and their effect on the surrounding steel structure– The second fire test", J. Constr. Steel Res. 107032 doi:10.1016/j.jcsr.2021.107032
- 8. Charlier, M., Glorieux, A., Dai, X., Alam, N., Welch, S., Anderson, J., Vassart, O. & Nadjai, A. (2022) "Travelling fire experiments in steel-framed structure: numerical investigations with CFD and FEM", J. Struc. Fire Eng. 12(3):309-327 doi:10.1108/JSFE-11-2020-0034
- 9. Rush, D., Dai, X., Lange, D. (2020) "Tisova Fire Test fire behaviours and lessons learnt", Fire Saf. J. 103261 doi:10.1016/j.firesaf.2020.103261
- 10. Charlier, M., Gamba, A., Dai, X., Welch, S., Vassart, O. & Franssen, J.-M., (2020) "Modelling the influence of steel structure compartment geometry on travelling fires", invited paper for ICE Structures & Building Journal special issue on "Structural Design for Fire Safety", 174(9):739-748 doi:10.1680/jstbu.20.00073

References – journal papers (2)

12. Gamba, A., Charlier, M. & Franssen, J.-M. (2020) "Propagation tests with uniformly distributed cellulosic fire load", Fire Saf. J.117, 103213 doi: 10.1016/j.firesaf.2020.103213

- 13. Dai, X., Welch, S., Vassart, O., Cábová, K., Jiang, L., Maclean, J., Clifton, G.C. & Usmani, A. (2020) "An Extended Travelling Fire Method framework for performance-based structural design", Fire & Materials (Special Issue Paper) 44(3):437-457 doi:10.1002/fam.2810
- 14. Dai, X., Welch, S. & Usmani, A. (2017) "A critical review of "travelling fire" scenarios for performance-based structural engineering", Fire Saf. J. 91C: 568-578, doi:10.1016/j.firesaf.2017.04.001

References – conference papers (1)

- 1. Liu, C., Dai, X., Ming, X.M. & Welch, S. (2024) "CFD predictions of fire spread over wood cribs in large open-plan compartments: new insights", 4th Euro. Symp. Fire Safety Science (ESFSS4), Barcelona, Spain 9-11 October 2024 [extended paper invited for Special Issue, under review Apr 2025]
- Nan, Z., Dai, X., Welch, S. & Usmani, A. (2022) "The significance of slab for structural response under travelling fires", SiF 2022 12th Int. Conf. Structures in Fire Hong Kong Polytechnic Uni., Hong Kong, 30 Nov – 1 Dec 2022
- Dai, X., Alam, N., Liu, C., Nadjai, A., Rush, D. & Welch, S. (2022) "A novel alternative for large scale structural fire testing under travelling fires: "Scaling up" fire spread on wood cribs using CFD", SiF 2022 12th Int. Conf. Structures in Fire - Hong Kong Polytechnic Uni., Hong Kong, 30 Nov – 1 Dec 2022
- Nadjai, A., Alam, N., Charlier, M., Vassart, O., Franssen, J.-M. & Welch, S. (2022) "Large scale fire test: Travelling fire leading to flashover under ventilation controlled conditions and its influence on the surrounding steel structure", SiF 2022 – 12th Int. Conf. Structures in Fire - Hong Kong Polytechnic Uni., Hong Kong, 30 Nov – 1 Dec 2022
- Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) "Travelling fire in full scale experimental building subjected to open ventilation conditions", SiF 2020 11th Int. Conf. Structures in Fire, University of Queensland, Brisbane, Australia, 30 Nov – 2 Dec 2020 doi:10.14264/987a305
- Charlier, M., Vassart, O., Dai, X., Welch, S., Sjöström, J., Anderson, J. & Nadjai, A. (2020) "A simplified representation of travelling fire development in large compartment using CFD analyses", SiF 2020 11th Int. Conf. Structures in Fire, University of Queensland, Brisbane, Australia, 30 Nov – 2 Dec 2020 doi:<u>10.14264/5af38e2</u>
- Nan, Z., Dai, X., Chen, H., Welch, S. & Usmani, A. (2020) "A numerical investigation of 3D structural behavior for steel-composite structures under various travelling fire scenarios", SiF 2020 11th Int. Conf. Structures in Fire, Uni. Queensland, Brisbane, Australia, 30 Nov – 2 Dec 2020 doi:10.14264/a1068ab
- Dai, X. & Welch, S. (2019) "The challenge of scaling-up wood crib fire experiments to travelling fires in large compartments", UK Consortium on Turbulent Reacting Flows (UKCTRF) annual conference, Imperial College, London, 11-12 September 2019 http://www.ukctrf.com/wp-content/uploads/2019/10/UKCTRF-Edinburgh-crib-fire-modelling-Dai-Welch-Sep-19.pdf
- 11. Dai, X. & Welch, S. (2019) "Characterising natural fires in large compartments for structural design revisiting an early travelling fire test (BST/FRS 1993) with CFD", Proc. 3rd Int. Conf. Structural Safety under Fire & Blast (CONFAB), 2-4 September 2019
- 12. Franssen, J.-M., Gamba, A. & Charlier, M. (2019) "Toward a standardized uniformly distributed cellulosic fire load", Proc. IFireSS 2019, 3rd Int. Fire Safety Symp., Ottawa, Ontario, Canada 5-7 June 2019

References – conference papers (2)

- 13. Anderson, J., Sjöström, J., Temple, A, Dai, X., Welch, S., Rush, D., Charlier, M. & Anderson, J. (2019) "FDS simulations and modelling efforts of travelling fires in a large elongated compartment", Proc. 15th Int. Conf. & Exhibition on Fire Science & Engineering (Interflam 2019), Royal Holloway College, Nr Windsor, UK, 1-3 Jul 2019
- 14. Dai, X., Welch, S., Rush, D., Charlier, M. & Anderson, J. (2019) "Characterising natural fires in large compartments revisiting an early travelling fire test (BST/FRS 1993) with CFD", Proc. 15th Int. Conf. & Exhibition on Fire Science & Engineering (Interflam 2019), Royal Holloway College, Nr Windsor, UK, 1-3 Jul 2019
- 15. Dai, X., Welch, S. & Usmani, A. (2018) "an extended travelling fire method framework for performance-based structural design", Proc. ASTM E05 Workshop on Advancements in Evaluating the Fire Resistance of Structures, Washington DC, 6-7 Dec 2018
- 16. Dai, X., Welch, S. & Usmani, A. (2018) "Structural implications due to an Extended Travelling Fire Methodology (ETFM) framework using SIFBuilder", Proc. 10th Int. Conf. Structures in Fire (SiF 2018), 6-8 Jun 2018, FireSERT, Ulster University, Belfast, UK, pp. 455-462
- 17. Charlier, M., Vassart, O., Gamba, A., Dai, X., Welch, S. & Franssen, J.-M. (2018) "CFD analyses used to evaluate the influence of compartment geometry on the possibility of development of a travelling fire", Proc. 10th Int. Conf. Structures in Fire (SiF 2018), University of Ulster, 6-8 Jun 2018, pp. 341-347
- 18. Dai, X., Welch, S. & Usmani, A. (2017) "A critical review of travelling fire scenarios for performance-based structural engineering", Proc. 11th Int. Symp. Fire Safety Science, Lund, Sweden, Jun 2017, pp. 568-578
- 19. Dai, X., Jiang, Y., Jiang, L., Welch, S. & Usmani, A. (2017) "Implementation of Fire Models in OpenSees", Proc. 1st Euro. Conf. on OpenSees, 19-20 Jun 2017, Porto, Portugal, pp. 47-50
- 20. Dai, X., Jiang, L., Maclean, J., Welch, S. & Usmani, A. (2016) "A conceptual framework for a design travelling fire for large compartments with fire resistant islands", Proc. 14th Int. Conf. and Exhibition on Fire Science and Engineering (Interflam 2016), Royal Holloway College, Nr Windsor, UK, 4 6 Jul 2016
- 21. Dai, X., Welch, S. & Usmani, A. (2016) "Implementation of a new design travelling fire model for global structural analysis", Proc. 9th Int. Conf. on Structures in Fire (SiF2016), Princeton University, New Jersey, USA, 8-10 Jun 2016, pp. 959-966
- 22. Jiang, L., Dai, X. Usmani, A. & Kamath, P. (2015) "OpenSees-based Integrated Tool for Modelling Structures in Fire", Proc. 1st Int. Conf. Struc. Safety under Fire & Blast (CONFAB), 2-4 Sep 2015, Glasgow, Scotland, UK, pp. 461-468

References – presentations

- 1. Liu, C., Dai, X., Ming, X. M. & Welch, S. (2025) "Insights from numerical simulators for compartment fire spread", 12th European Combustion Meeting (ECM2025), Edinburgh, 7-9 April 2025
- 2. Liu, C., Ming, X. M., Dai, X. & Welch, S. (2025) ""Simulation of fire spread in large compartments under different ventilation condition", Structures in Fire Forum (StiFF), Edinburgh, 7 April 2025
- 3. Liu, C., Welch, S., Dai, X. & Ming, X. M. (2024) "Exploring CFD models for travelling fires", IMechE seminar "Improving fire safety through simulation and modelling", Birmingham International Convention Centre, 11 Jun 2024 https://www.imageneticstocom (2024) "Exploring CFD models for travelling fires", IMechE seminar "Improving fire safety through simulation and modelling", Birmingham International Convention Centre, 11 Jun 2024 https://www.imageneticstocom (2024) "Exploring CFD models for travelling fires", IMechE seminar "Improving fire safety through simulation and modelling", Birmingham International Convention Centre, 11 Jun 2024 https://www.imageneticstocom (2024) "Exploring CFD models for travelling fires", IMechE seminar "Improving fire safety through simulation and modelling", Birmingham International Convention Centre, 11 Jun 2024 https://www.imageneticstocom (2024) "Exploring CFD models for travelling fires", Imageneticstocom (2024) "Exploring CFD models" (2
- 4. Nan, Z., Dai, X., Welch, S. & Usmani, A. (2023) "The coupling effect of fire protection and travelling fire spread rate on steel-composite structures: a numerical investigation", SFPE 5th Euro. Conf. & Expo on Fire Safety Engineering Berlin Marriott Hotel, Berlin, Germany, 29-30 Mar 2023 <u>https://www.sfpe.org/europe23/home</u>
- 5. Dai, X., Liu, C., Lu, W. & Welch, S. (2022) "Scaling-up" fire spread on wood cribs using CFD", UKCTRF Annual meeting, Newcastle University, 13-14 Sep 2022 <u>https://www.ukctrf.com/wp-content/uploads/2022/09/Chang-Liu-Stephen-Welch.pdf</u>
- 6. Dai, X. & Welch, S. (2022) "Characterising "Travelling Fires" through modelling in the built environment", IMechE seminar "Improving fire safety through simulation and modelling: Tools, techniques and realworld applications", Institution of Mechanical Engineers, London, 27 Sep 2022 <u>https://events.imeche.org/ViewEvent?e=7507</u>
- 7. Liu, C., Charley, P., Dai, X. & Welch, S. (2021) "Numerical modelling of fire spread on wood cribs: the role of the char and enhanced grid sensitivity studies", UKCTRF Annual meeting, Brunel University (online), 2 Dec 2021 https://www.ukctrf.com/wp-content/uploads/2021/12/Stephen-Welch.pdf
- 8. Welch, S. & Dai, X. (2021) "Numerical modelling of fire spread on wood cribs: parameter sensitivity analysis", UKCTRF Annual meeting, Newcastle University (online), 29 Mar 2021 https://www.ukctrf.com/wp-content/uploads/2021/12/Stephen-Welch-1.pdf
- 9. Welch, S. (2019) "The challenge of scaling-up wood crib fire experiments to travelling fires in large compartments", UKCTRF Annual meeting, Imperial College London, 11 Sep 2019 https://www.ukctrf.com/wp-content/uploads/2019/10/UKCTRF-Edinburgh-crib-fire-modelling-Dai-Welch-Sep-19.pdf
- 10. Welch, S. (2019) "Challenges in real-time simulation of fire evolution: Smart Firefighting for the Megacity", RISUD Annual International Symposium, Hong Kong, China, 25-26 Nov 2019 https://www.bse.polyu.edu.hk/polyufire/
- 11. Dai, X. & Welch, S. (2019) "The challenge of scaling-up wood crib fire experiments to travelling fires in large compartments", UK Consortium on Turbulent Reacting Flows (UKCTRF) annual conference, Imperial College, London, 11-12 Sep 2019 http://www.ukctrf.com/wp-content/uploads/2019/10/UKCTRF-Edinburgh-crib-fire-modelling-Dai-Welch-Sep-19.pdf

THE UNIVERSITY of EDINBURGH

