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Context — “compartmentation” vs. “Open-plan” -+ = == = = =
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Figure 3-2: Average compartment ceiling temperature for the CIB Tests for crib configurations

2,1 - 1,3 and 2.3, together with their correspandent best-fit lines drawn as 4™ grade polynomials.

> M Od ern b u | Id | n gS favou r 1 o) pe n _p I an I d es i g n Majdalani, A. (2015) Compartment fire analysis for contemporary architecture

PR thesis, School of Engincering, Uni Edinburgh ora.ed a6 ukihandlel1842/9969
> Classic compartment fire framework from fire tests in small, near cubic compartments

> Fires in open-plan settings tend to “travel” across compartments

> Characteristic spatially and temporally varying boundary condition

> Fire dynamics strongly influenced by ventilation, spanning fuel-controlled & ventilation-controlled fires
> Complex momentum/fuel bed control in former => no simple theoretical treatments
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> BST/FRS 1993 Test
> Under-ventilated fires

> TRAFIR-Ulster Test > TRAFIR-Ulster Test
> Well-ventilated fires
> Stick-by-stick

> Detailed pyrolysis model

> Hypothetical scenarios > TRAFIR-Liége Test

> Well-ventilated fires
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> No airflow through crib !
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> Discrete boxes > Discrete boxes

> Simple pyrolysis model > Simple pyrolysis model > Simple pyrolysis model > Simple pyrolysis model

> [gnition temperature > Ignition temperature

> Prescribed HRRPUA > Prescribed HRRPUA
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Numerical Simulators for Travelling Fires — Workflow and Strategy

e Parameterisation —\ / Calibration —\ ( Validation —
” ”
'l: I’\ E
gl b e ,
\_ TGA/DTG Tests ) \_ TRAFIR-Liege Test Series J kTRAFIR—UIster Test Series )
Fuel bed representation and fire growth modelling
> Discrete boxes Stick-by-stick
> Simple pyrolysis Detailed (or complex) pyrolysis

Detailed pyrolysis
> Fire spread post-ignition burning rates are now linked to thermal environments
> Enhanced burning rates due to higher thermal feedback
> Repeated Scaling Up exercise, starting with calibration for isolated crib,
>> then translated *predictively* for large compartments
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Complex overlapping fire phenomena spanning gas/solid + coupling

Solid phase ! Gas phase
o E ----------------------------------------------------------------------- i
e
L T :
s 35S L.y Oxygen g
H 1 i Diffusion g
b Mimsoesmasn I
H ] H
H i
! i R | R FeetTTTT T ™M -
Production of Transportof | i | Diffusionof | : | | L Elamin ' i Sootand |
Pyrolysis flammable vapours in the [ vapours in the %= Ignition  }md 9 heend smoke i
; i ' i i i combustion i : i
vapours solid : gas ! i ! i ! ; formation |

Chosen modelling tool (numerical simulator) Key physical models
Fire Dynamics Simulator (FDS) c/o NIST, v. 6.7.0 ~ Detailed (or simple) pyrolysis models

https://pages.nist.gov/fds-smv/ Fixed radiative loss (0.35)
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Table 1. Kinetic parameters for thermal decomposition of spruce used in the model.

Model parameters determination

Parameter values (data bounds?) for first order reactions

Y/0) Ref. AP Ref. EP Ref. Vehar Ref.
Parallel Reaction Schemes & L iy 0
Cellf 0422 [14-18] 8.18 x 10" [14-17] 170 [14-17] 002 [18]
/ . — . 1 (0.38-044) (10"-10')/N2 (186-236)/Nz (0.06-0.13)
Wood Component i — Vchar,zChar + (1 vchar,l)Volatlles o v ek
where: Hemi, 0230 [14-18] 2,51 = 10° [14-17] 88.5 [14-18) 0.15 [18]
Wood Component i refers to cellulose and hemicellulose and lignin L ] s ol L
Venar i 1S the mass fraction of char produced by component i Lign®  0.180 [418]  450x10'  [1417] 550 0417 037 18]
' (0.08-0.23) (10°10")/N2 (38-46)/N; (0.38-0.44)
(10°-107)/Air (66-121)/Air

Reaction rates:

the crib scale has been successfully reproduced.

Each Component i has Arrhenius dependence on temperature,
proportional to normalised mass fractions of solid-phase reactants (Y ):

©*“Cell.”, “Hemi.”, and “Lign.” abbreviate cellulose, hemicellulose and lignin, respectively.

# Values in bracket are extracted from literature using identical reaction schemes with reaction orders set to unity for Norway spruce.
" Kinetic constants (A; and E) were carefully tuned within the pre-defined boundaries until all the key features associated fire spread at

Table 2. Thermo-physical properties for spruce and char used in the model.

R = Yo idioxp | — - ) x. Oni .y . (84 & T 7
i = 1s,idi®Xp RT. 0) > IS T (0) kgm?)  (WaorlK') KIkg'K) () (kg (MIkg')
S 2 S Virgin Wood" 468 0.13 1.30 09 600/900/-1200  1217/10
Where: (Cell./Hemi /Lign.)
A, is the pre-exponential factor [s'] et v i A i Ml "
E; is the activation energy of solid-phase reactant [kJ mol-'] 0.10 (800°C) 125 (200°C)
. . 0.35 (1200°C 1.45 (380°C
T, is the solid temperature of reactant [K] R e

# Thermal properties for virgin spruce wood at ambient are kept the same with our previous publication [7].

® Temperature-dependent specific heat and conductivities for spruce-derived char are extracted from [20,21,23] and emissivity from
[22], density from [23].

¢ Heat of Reaction H,,and Heat of Combustion H,, are extracted and adapted from [24] on the same wood species, to ensure that the
weighted average values are in line with the literature.

Xo, is oxygen volume fraction [-]
m;; is the mass of the reactant j [kg]
my, is the initial mass of wood aggregate [kg]
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Fig 1 Comparisons of fire spread evolution between LB7 experiment and FDS model for a full-scale isolated wood crib fire
test (Gamba et al., 2020) at 4 min time intervals (test images provided by Uni Lieége, model images rendered by PyroSim
with 200 kW/m3as HRRPUV cut-off for colouring fires): a) test; b) model; ¢c) model without obstructions
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TRAFIR Ulster Travelling Fire Test 1, (a) Skewed view, (b) Front view, figures adapted from Nadjai et al. [11].

* Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sj6strom, J. (2020) “Travelling fire in full scale experimental building subjected to open ventilation conditions”,
SiF 2020 — 11t Int. Conf. Structures in Fire , University of Queensland, Brisbane, Australia, 30 Nov — 2 Dec 2020 doi:10.14264/987a305
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ULSTER TEST 1 ULSTER TEST 2 ULSTER TEST 3

(a) (b) (c)

Fig 2 Comparisons of test and model set-up for TRAFIR Ulster Travelling Fire Test Series (Nadjai et al., 2022):
a) test 1 (inverse opening factor: 1.6); b) test 2 (inverse opening factor: 8.1); c) test 3 (inverse opening factor: 26.4)
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(c)

(b)
Fig 3 TRAFIR Ulster Travelling Fire Test 1 compartment with dimensions: a) front view; b) skewed view; c) side view.
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(a) (b)

Fig 4 Comparisons of model set-up for TRAFIR Ulster Travelling Fire Test Series (Nadjai et al., 2022):
a) test 1 (inverse opening factor: 1.6 — well ventilated); b) test 2 (inverse opening factor: 8.1 - transitional)
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Fig 5 Grid resolution of the scaled-up model: 1.5 cm x 1.5 cm x 1.75 cm per cell inside the crib, 6.0 cm x 6.0 cm x 7.0 cm
above the crib, 8.3M cells in total running on 248 cores; mesh boundary positioned 4 cells above the crib surface.
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Fig 6 Comparisons of fire
spread evolutions between test
and model for Ulster Travelling
Fire Test 1 at 10 min time
intervals (test videos c/o Ulster
University, model images
rendered by PyroSim with 200
kW/m3as HRRPUV cut-off for
colouring fires):

a) test footage;

b) FDS model prediction;

c) model without obstructions
(obstructions hidden to
show fire spread on and
inside wood cribs).
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Fig 7 Comparisons of fire spread between test and model at compartment centreline along fire trajectory: a) fire spread
length b) fire spread rates and ratio of fire spread rates at fire front to burnout front (V4/Vgp).
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Fig 8 Evolution of incident heat fluxes on fuel bed top layer at 10 min time intervals (heat fluxes in kW/m?)
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Fig 9 Evolution of instantaneous fuel burning rates of top layer at 10 min time intervals (burning rates in kg/m?/s)
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Fig 10 HRR evolution and instantaneous burning rates every 4 sticks along compartment centreline on fuel bed top layer
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Some Aspects of the Growth and Spread
of Fire in the Open

P. H THOMAS
Ministry of Technology and Fire Offices’ Committee Joint Fire Research Organization

FIRE SPREAD IN EXPERIMENTAL FUEL BEDS, SPREAD IN STILL AIR

It is comparatively recently that attempts have been made to study the
spread of fire in laboratory conditions. A large number of experiments in
which fire spread through a crib of wood have been conducted by Fons et al.
(1962) and after his death by Byram et al. (1964) in ‘Project Fire Model’.
They burnt cribs constructed of layers of wood sticks parallel to each other,
spaced horizontally a fixed distance apart, each alternate layer having the
sticks running at right angles to the layer beneath. Thomas and Simms (1964)
and Thomas, Simms, and Wraight (1964) have briefly reported a correlation
of such data, with parameters which can be used for other types of fuel beds:

o is the surface per unit of fuel bed volume
A is the volume of voids/surface of solid.

From these definitions it follows that the porosity (the volume of voids per
unit of volume) is given by oA

€= 1+oA
and for a crib of sticks of size a separated horizontally by a distance s (i.e.
1-+a between centres).
o= 4la and A= s/4.

* Thomas, P.H. (1965) “Some aspects of the growth and spread of fire in the open”,
Fire Research Note No. 552 https://publications.iafss.org/publications/frn/552/-1

Equation (13) gives the rate of spread for thin fuels while equations (13) and
(15) to (17) give that for thick fuels namely:

L [0\ (1+02)
B (% Bhet

where )}, is the net forward flux allowing for cooling losses
c,, is the effective specific heat of the moist wood

f; is the temperature rise causing ignition in the presence of flame,
taken here as 300° C (Simms, 1963),

and  p, is the mass of wood heated to ignition per unit volume of fuel bed.
K is the thermal conductivity

The more detailed theory (Thomas and Simms, 1964) allowing for cooling
within the fuel bed gives this as the correct result with

0= 0" —267 HY,

where Q" is the gross heat transfer flux and H the cocling coefficient. More-
over, the fuller treatment can be used to calculate the theoretical value of R
over the range of stick sizes between thick and thin fuels. The calculations
express Rpyt,/H as a function of H/Ko and ()"/HS, or any combination of
these. Byram et al.’s experimental data (excluding those for which A < o-8 cm,
which are referred to below), and those of Fons et al. are shown in Fig. 7.
Both sets are for white fir (4bies concolor). The best value of Q/HS, found
by fitting a theoretical line through the data gives a value for Q° of about
6-8 W /cm? according to the choice of H. This value for the gross heat transfer
is typical of radiation from a highly emissive burning zone at about 800” C.
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Fig 11 Parametric study on opening factors and areas extended from Ulster TRAFIR Tests 1 and 2 (U1, U2)
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. . . Table 1. Summary of compartment configurations used for parametric studies.
Variant | Opening area Parameter studied e ———
(mZ) Candidates for comparisons ;::;auw) :’::1:;(;6') v::_:b]es Objectives
Ul 15x2x2 + 9x3 = 82.2 1.6 Baseline well ventilated T a— e T
uivi 82.2 1.6 End wall by fire/distant m ;
W [ sawn  1swn  opeing  Tristorminaas
U1v2 57.2 2.8 Two end walls mmm S
u2 15x1x2 = 30.0 8.1 Baseline transitional Mmm A ———
. 30.0(U2) 8.1 (U2) areas Rislcoropeaing e
u2vi 30.0 5.8 Full side wall/open wall MF‘:':'%FUW%
u2v2 30.0 5.8 Downstand v upstand WO e e ol fopning fcors
. , ‘MBIIM\
ETFT 11 17.8x1.5=24.8 5.0 Baseline well ventilated &
RN e
ETFT 12 (3x1.1)x1.5=5.0 28.5 Baseline underventilated Mm;m ' ' ca B
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Fig 12 Comparison of heat release rate evolutions for 6 parametric study scenarios
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Temperature (°C)
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Fig 13 Comparison of “far field” smoke layer development (demarcated by 200°C contour) for 6 parametric study scenarios
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Temperature (°C)
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Fig 14 Comparison of “far field” smoke layer temperature and flow development for the U2 variants (downstand/upstand)
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Fig 16 Locations of “front”, “centre” & “rear” longitudinal lines on fuel bed surface in right-side view of U1 compartment
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Fig 17 Comparison of fire progression (fire front/burnout front locations across depth) for 6 parametric study scenarios
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Fig 21 Comparisons of fire spread between test and model at compartment centreline along fire trajectory every 10 mins: (b)
a) Ulster TRAFIR test 1 (well ventilated IOF=1.6 m0-5) b) Ulster TRAFIR test 2 (transitional IOF=8.1 m-0-5)
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Fig 22 Comparisons of fire spread between test and model at Ulster compartment centreline at 50 mins: a) test 1 b) test 2
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Fig 23 Instrumentation positions
implemented in Ulster test and model:

a) position of thermocouple trees
(TRLs) in elevation view;

b) position of thermocouples (TCs and
TRLs) and Thin-Skin Calorimeters
(TSCs) in plan view (TSCs were all
placed on top of fuel bed level, TC 1-6
were placed 20 cm below ceiling, TRL
1-11 are thermocouple trees placed
directly above the wood cribs, igniter
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Fig 24 Ulster Test 1: Comparison of thermocouple temperatures at compartment centreline along fire trajectory, TRL 4-8
(NB TRL5-2.0 m and 2.5 m malfunctioned due to overheating during data acquisition)
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Fig 25 Ulster Test 2: Comparison of thermocouple temperatures at compartment centreline along fire trajectory, TRL 4-8
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Conclusions (1)

> Building on previous work which has demonstrated the possibility of applying a detailed pyrolysis model to predict fire
spread at both lab- and compartment-scales, via a numerical simulator that provides enhanced representations of wood
cribs fuel bed geometry on a detailed “stick-by-stick” basis and integrates condensed-phase pyrolysis processes via
multiple parallel reaction pathways.

> Compared to approaches which consider fire spread primarily in terms of ignition to a new fuel surface, results relate
burning rates to the local fire environment to gain better understanding of the drivers of fire spread.

> “Numerical simulator” gives insights into fire science phenomena:
a) Captures progression of ignition and burning rates on each surface of each wood stick
b) Demonstrates evolving fuel surface boundary condition arising from fire plume and hot smoke layer above it
c) Demonstrates evolution of surface and in-depth burning within crib as fire progresses in different regimes

> Validation extends to inversion opening factor range 1.6 to 8.1 m-0-5, within the fuel-controlled regime; this opens up new
avenues for performing experiments virtually within a similar range, enabling the exploration of fire dynamics in ways that
would be impossible or impractical to address through physical tests alone.
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Conclusions (2)

> Parametric studies in the well-ventilated regime clarifies factors influencing fire spread and thermal severities:

a) restriction of ventilation tends to supports heat retention and enhances fire spread via pre-heating, resulting in
more rapid transition to growing and greater thermal severities;

b) proximity of initial fire to solid boundaries supports more rapid spread away from igniter;
c) by contrast, burning in vicinity of solid boundaries tends to be suppressed due to lack of oxygen;
d) arrangement of openings can have a big impact on fire development due to differences in smoke layer evolution;
e) an extreme example is replacing a downstand with an upstand, and consequent reduced thermal severities;
f) complex trade offs between layer depth and energy release rates via local limits on oxygen
Hence an overall recognition that:
» opening factors and/or areas on their own are poor determinants of fire spread drivers (Thomas said!)
» aclear gain associated with CFD-based numerical simulators
o detailed exploration of fire behaviours, potential for unravelling fire spread mechanisms
o see our Interflam and forthcoming IAFSS papers...
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Limitations and further work

> Further study needed of model predictions for more enclosed scenarios (higher inverse opening factors):
a) higher sensitivity to uncertain thermal properties of compartment linings;
b) extinction models are required for underventilated conditions and remain highly uncertain;
c) soot yields rise strongly when underventilated and FDS uses a conserved scalar which will be unrepresentative.
> All of the same considerations apply for applications with timber-lined compartments:
a) prediction of time to ignition might be possible using the same detailed pyrolysis model, and variants for other woods;
b) the subsequent enhanced heat release rates typically lead directly to the conditions mentioned above;
c) great care needed in exercising such models, and challenges in “validation” given the complexities;
d) moreover, the inability to represent the heat transfer from glowing embers becomes a more dominant issue.
> Ultimately provide input to analytical models for structural fire engineering:
a) parallel research stream on sensitivities of structural performance;
b) significance of concrete/composite slab on structural fire performance
(Dr Xu Dai @Uni Liverpool, Dr Zhuojun Nan @TU Delft, etc.)
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