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Context – “compartmentation” vs. “Open-plan”

> Modern buildings favour “open-plan” design

> Classic compartment fire framework from fire tests in small, near cubic compartments

> Fires in open-plan settings tend to “travel” across compartments

> Characteristic spatially and temporally varying boundary condition

> Fire dynamics strongly influenced by ventilation, spanning fuel-controlled & ventilation-controlled fires 

> Complex momentum/fuel bed control in former => no simple theoretical treatments

Majdalani, A. (2015) Compartment fire analysis for contemporary architecture

PhD thesis, School of Engineering, Uni Edinburgh era.ed.ac.uk/handle/1842/9969

Compartment shape: x,y (,z) = width x depth (x height)

https://era.ed.ac.uk/handle/1842/9969
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Numerical Simulators for Travelling Fires – Road Map

> Hypothetical scenarios

> No airflow through crib

> Discrete boxes

> Simple pyrolysis model

> Ignition temperature

> Prescribed HRRPUA

Chariler et al., 2018  Liu et al., 2024  Dai et al., 2023  Dai et al., 2022  Dai et al., 2019  Charlier et al., 2018  

> BST/FRS 1993 Test

> Under-ventilated fires

> Discrete boxes

> Simple pyrolysis model

> Ignition temperature

> Prescribed HRRPUA

> TRAFIR-Liège Test

> Well-ventilated fires

> Stick-by-stick 

> Simple pyrolysis model

> Ignition temperature

> Prescribed HRRPUA

> TRAFIR-Ulster Test

> Well-ventilated fires

> Stick-by-stick 

> Simple pyrolysis model

> Ignition temperature

> Prescribed HRRPUA

> TRAFIR-Ulster Test

> Well-ventilated fires

> Stick-by-stick 

> Detailed pyrolysis model

> Arrhenius equations

> Linked with exposure



Fuel bed representation and fire growth modelling

> Discrete boxes Stick-by-stick

> Simple pyrolysis     Detailed (or complex) pyrolysis

Detailed pyrolysis

> Fire spread post-ignition burning rates are now linked to thermal environments

> Enhanced burning rates due to higher thermal feedback

> Repeated Scaling Up exercise, starting with calibration for isolated crib, 

>> then translated *predictively* for large compartments

Numerical Simulators for Travelling Fires – Workflow and Strategy



Complex overlapping fire phenomena spanning gas/solid + coupling

Chosen modelling tool (numerical simulator)

Fire Dynamics Simulator (FDS) c/o NIST, v. 6.7.0

https://pages.nist.gov/fds-smv/

Key physical models

Detailed (or simple) pyrolysis models

Fixed radiative loss (0.35)

https://pages.nist.gov/fds-smv/


Model parameters determination

Parallel Reaction Schemes

Wood Component i ⟶ vchar,iChar + (1− vchar,i)Volatiles

where:

Wood Component i refers to cellulose and hemicellulose and lignin

vchar,i is the mass fraction of char produced by component i

Reaction rates: 

Each Component i has Arrhenius dependence on temperature, 

proportional to normalised mass fractions of solid-phase reactants (Ys,i):

Ri = Ys,iAiexp −
Ei

RTs
X
O2

nO2,i ; Ys,i =
ms,i

ms(0)

where:

Ai is the pre-exponential factor [s-1] 

Ei is the activation energy of solid-phase reactant [kJ mol-1]

Ts is the solid temperature of reactant [K]

Xo2
is oxygen volume fraction [-]

ms,i is the mass of the reactant j [kg]

ms(0) is the initial mass of wood aggregate [kg]



Fig 1 Comparisons of fire spread evolution between LB7 experiment and FDS model for a full-scale isolated wood crib fire

test (Gamba et al., 2020) at 4 min time intervals (test images provided by Uni Liège, model images rendered by PyroSim

with 200 kW/m3 as HRRPUV cut-off for colouring fires): a) test; b) model; c) model without obstructions



TRAFIR Ulster tests – test 1 “open ventilation conditions”*

* Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) “Travelling fire in full scale experimental building subjected to open ventilation conditions”, 

SiF 2020 – 11th Int. Conf. Structures in Fire , University of Queensland, Brisbane, Australia, 30 Nov – 2 Dec 2020 doi:10.14264/987a305 

https://doi.org/10.14264/987a305


Fig 2 Comparisons of test and model set-up for TRAFIR Ulster Travelling Fire Test Series (Nadjai et al., 2022):

a) test 1 (inverse opening factor: 1.6); b) test 2 (inverse opening factor: 8.1); c) test 3 (inverse opening factor: 26.4)



Fig 3 TRAFIR Ulster Travelling Fire Test 1 compartment with dimensions: a) front view; b) skewed view; c) side view.



Fig 4 Comparisons of model set-up for TRAFIR Ulster Travelling Fire Test Series (Nadjai et al., 2022):

a) test 1 (inverse opening factor: 1.6 – well ventilated); b) test 2 (inverse opening factor: 8.1 - transitional)



Fig 5 Grid resolution of the scaled-up model: 1.5 cm × 1.5 cm × 1.75 cm per cell inside the crib, 6.0 cm × 6.0 cm × 7.0 cm

above the crib, 8.3M cells in total running on 248 cores; mesh boundary positioned 4 cells above the crib surface.





Fig 6 Comparisons of fire 

spread evolutions between test 

and model for Ulster Travelling 

Fire Test 1 at 10 min time 

intervals (test videos c/o Ulster 

University, model images 

rendered by PyroSim with 200 

kW/m3 as HRRPUV cut-off for 

colouring fires): 

a) test footage; 

b) FDS model prediction; 

c) model without obstructions 

(obstructions hidden to 

show fire spread on and 

inside wood cribs).

(a) (b) (c)



Fig 7 Comparisons of fire spread between test and model at compartment centreline along fire trajectory: a) fire spread

length b) fire spread rates and ratio of fire spread rates at fire front to burnout front (VS/VBO).
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Fig 8 Evolution of incident heat fluxes on fuel bed top layer at 10 min time intervals (heat fluxes in kW/m2)



Fig 9 Evolution of instantaneous fuel burning rates of top layer at 10 min time intervals (burning rates in kg/m2/s)



Fig 10 HRR evolution and instantaneous burning rates every 4 sticks along compartment centreline on fuel bed top layer
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* Thomas, P.H. (1965) “Some aspects of the growth and spread of fire in the open”, 

Fire Research Note No. 552 https://publications.iafss.org/publications/frn/552/-1

https://publications.iafss.org/publications/frn/552/-1


ULSTER (TRAFIR) IOF (m-0.5) ETFT (RFSDTB) IOF (m-0.5)

Well ventilated (U1) 1.6

Transitional (U2) 8.1 ETFT unrestricted (E11) 5.0

Under ventilated (U3) 26.4 ETFT restricted (E12) 28.5*
U1

*
U2

*
E11

*
E12

*
U3

Under 

ventilated

Regime I

Well 

ventilated

Regime II



Fig 11 Parametric study on opening factors and areas extended from Ulster TRAFIR Tests 1 and 2 (U1, U2)



Variant Opening area
(m2)

IOF 
(m-0.5)

Parameter studied

U1 15x2x2 + 9x3 = 82.2 1.6 Baseline well ventilated

U1V1 82.2 1.6 End wall by fire/distant

U1V2 57.2 2.8 Two end walls

U2 15x1x2 = 30.0 8.1 Baseline transitional

U2V1 30.0 5.8 Full side wall/open wall

U2V2 30.0 5.8 Downstand v upstand

ETFT 11 17.8x1.5 = 24.8 5.0 Baseline well ventilated

ETFT 12 (3x1.1)x1.5 = 5.0 28.5 Baseline underventilated



Fig 12 Comparison of heat release rate evolutions for 6 parametric study scenarios



Fig 13 Comparison of “far field” smoke layer development (demarcated by 200ºC contour) for 6 parametric study scenarios



Fig 14 Comparison of “far field” smoke layer temperature and flow development for the U2 variants (downstand/upstand)



Fig 15 Comparison of fire progression (fire front contours) in plan for 6 parametric study scenarios



Fig 16 Locations of “front”, “centre” & “rear” longitudinal lines on fuel bed surface in right-side view of U1 compartment



Fig 17 Comparison of fire progression (fire front/burnout front locations across depth) for 6 parametric study scenarios



Fig 18 Comparison of fire progression rates (fire front/burnout front locations across depth) for 6 parametric study scenarios



Fig 19 Comparison of fire spread velocity ratios fire (Vs front/Vbo burnout front) for 6 parametric study scenarios



Fig 20 Comparison of heat flux ratios (vertical v horizontal) for 6 parametric study scenarios



Fig 21 Comparisons of fire spread between test and model at compartment centreline along fire trajectory every 10 mins:

a) Ulster TRAFIR test 1 (well ventilated IOF=1.6 m-0.5) b) Ulster TRAFIR test 2 (transitional IOF=8.1 m-0.5)

(a) (b)



Fig 22 Comparisons of fire spread between test and model at Ulster compartment centreline at 50 mins: a) test 1 b) test 2

(a)

(b)

Ulster T1 50 min

Ulster T2 50 min



Fig 23 Instrumentation positions 

implemented in Ulster test and model: 

a) position of thermocouple trees 

(TRLs) in elevation view; 

b) position of thermocouples (TCs and 

TRLs) and Thin-Skin Calorimeters 

(TSCs) in plan view (TSCs were all 

placed on top of fuel bed level, TC 1-6 

were placed 20 cm below ceiling, TRL 

1-11 are thermocouple trees placed 

directly above the wood cribs, igniter 

is shown as red square 1 m away 

from back wall)



Fig 24 Ulster Test 1: Comparison of thermocouple temperatures at compartment centreline along fire trajectory, TRL 4-8

(NB TRL5-2.0 m and 2.5 m malfunctioned due to overheating during data acquisition)



Fig 25 Ulster Test 2: Comparison of thermocouple temperatures at compartment centreline along fire trajectory, TRL 4-8



Fig 26 HRR evolution and instantaneous burning rates every 4 sticks along compartment centreline on fuel bed top layer



Conclusions (1)

> Building on previous work which has demonstrated the possibility of applying a detailed pyrolysis model to predict fire 

spread at both lab- and compartment-scales, via a numerical simulator that provides enhanced representations of wood 

cribs fuel bed geometry on a detailed “stick-by-stick” basis and integrates condensed-phase pyrolysis processes via 

multiple parallel reaction pathways.

> Compared to approaches which consider fire spread primarily in terms of ignition to a new fuel surface, results relate 

burning rates to the local fire environment to gain better understanding of the drivers of fire spread. 

> “Numerical simulator” gives insights into fire science phenomena:

a) Captures progression of ignition and burning rates on each surface of each wood stick

b) Demonstrates evolving fuel surface boundary condition arising from fire plume and hot smoke layer above it

c) Demonstrates evolution of surface and in-depth burning within crib as fire progresses in different regimes

> Validation extends to inversion opening factor range 1.6 to 8.1 m-0.5, within the fuel-controlled regime; this opens up new 

avenues for performing experiments virtually within a similar range, enabling the exploration of fire dynamics in ways that 

would be impossible or impractical to address through physical tests alone.



Conclusions (2)

> Parametric studies in the well-ventilated regime clarifies factors influencing fire spread and thermal severities:

a) restriction of ventilation tends to supports heat retention and enhances fire spread via pre-heating, resulting in 

more rapid transition to growing and greater thermal severities;

b) proximity of initial fire to solid boundaries supports more rapid spread away from igniter;

c) by contrast, burning in vicinity of solid boundaries tends to be suppressed due to lack of oxygen;

d) arrangement of openings can have a big impact on fire development due to differences in smoke layer evolution;

e) an extreme example is replacing a downstand with an upstand, and consequent reduced thermal severities;

f) complex trade offs between layer depth and energy release rates via local limits on oxygen

Hence an overall recognition that:

➢ opening factors and/or areas on their own are poor determinants of fire spread drivers (Thomas said!)

➢ a clear gain associated with CFD-based numerical simulators

o detailed exploration of fire behaviours, potential for unravelling fire spread mechanisms

o see our Interflam and forthcoming IAFSS papers…



Limitations and further work

> Further study needed of model predictions for more enclosed scenarios (higher inverse opening factors):

a) higher sensitivity to uncertain thermal properties of compartment linings; 

b) extinction models are required for underventilated conditions and remain highly uncertain;

c) soot yields rise strongly when underventilated and FDS uses a conserved scalar which will be unrepresentative.

> All of the same considerations apply for applications with timber-lined compartments:

a) prediction of time to ignition might be possible using the same detailed pyrolysis model, and variants for other woods;

b) the subsequent enhanced heat release rates typically lead directly to the conditions mentioned above;

c) great care needed in exercising such models, and challenges in “validation” given the complexities;

d) moreover, the inability to represent the heat transfer from glowing embers becomes a more dominant issue.

> Ultimately provide input to analytical models for structural fire engineering:

a) parallel research stream on sensitivities of structural performance;

b) significance of concrete/composite slab on structural fire performance 

(Dr Xu Dai @Uni Liverpool, Dr Zhuojun Nan @TU Delft, etc.) 
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Characterisation of TRAvelling FIRes in large compartments

Industrial led – ArcelorMittal, Luxembourg

(1/07/2017 → 31/12/2020)

> Testing 

Isolated elements & simplified fire progression, full-scale large compartment

> Modelling

Simplified analytical/phenomenological models and CFD

https://www.researchgate.net/project/TRAFIR-Characterization-of-TRAvelling-FIRes-in-large-compartments
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