TUDelft

Structural response of steelcomposite structures in under-ventilated travelling fires: numerical insights from the BST/FRS 1993 Fire Tests

Zhuojun Nan, Xu Dai*

16-4-2025

The BST/FRS 1993 Fire Test Series

Nine tests with varied **fuel loads & ventilation conditions**

conducted by British Steel Technical (BST) & Fire Research Station (FRS) at the BRE Cardington laboratory to simulate the behaviour of natural fires in large-scale compartments ^[1].

- Compartment dimensions: 22.8m (L) \times 5.6m (W) \times 2.75m (H)
- Fuel load: Discrete wood cribs
- Ventilation: Single opening at one short end

Designed to represent a 'slice' of a larger compartment with infinite width Opening represents a small piece of a long 'window wall' in building

[1] Kirby BR, Wainman D, Tomlinson LN, Kay T, Peacock BN (1999) NATURAL FIRES IN LARGE SCALE COMPARTMENTS. In: International Journal on Engineering Performance-Based Fire Codes. pp 43–58

Test selection & Key parameters

Investigate effects of ventilation conditions and fuel load density on fire

Parameter	Test 1	Test 2	Test 3	Test 4	sts 8, 9 only)	Test of	
Compartment Size	Full size	Full size	Full size	²⁷⁵⁰ (Tests 1, 9, 9) size	2680 (Test 8)	1470 Full size	097.5
Paran Wealls and Ceiling Test Compartment Size Full size Full s Walls and Ceiling	Test 3	Test 4 Test 5 Geramic fibresize	Test 6 Ceramic fibre	2532.5 (Test 8). Ceramic 50 Ceramic 50 Ceram	^{532.5} ^{Fest 8)} 597.5 ^{Fest 9)}		ユ
LiningFire load density,Ceramic fibre CeramicCeramic CeramicFire load density, kg/m² of Flotor20	Tibre Ceramic fibre Ce 40 20	amic fibre Ceramic fil 20 40 20	re Ceramic fibre $\frac{20}{20}$	¹ / ₁ OPENIN ; 4 09 STS 1, 2, 8 k 9	20	1/ ₂ OPENING 2165 TS 3 & 4 14	1
Ventilation Ventilation $\frac{1}{1}$	1/1/2	$\frac{1/2}{1/1}$ $\frac{1/4}{1/4}$	1/8/2			2597.5	^{597.5} >
Fire load der in filation Factor, Wf 380	1.4795	$1.4795_{380.1}$	2.3087	$\begin{bmatrix} -2.30895 \\ 17307 \end{bmatrix}$	- 2.9396	J3.2760	<u></u> ⊥ ⊥
(MJ/m ² of Floor) Ignition/Fire Progress* density, qf Grow (MJ/m ² of Floor)	^{ing} 759.9 ^{ng}	Frowing 380.1 Growing	Growing 1 380-1	т т	」 <u>「</u> 」380.1		ч г ч
Ignition/Fire Progress*	Growing	Growing	Growing	Growingening	Growing	Growner	1

Summary of key parameters in Tests 1-6

11

Typical fire development pattern

FDS simulation replicated the fire spread observed in Test 2

X. Dai*, S. Welch, D. Rush, M. Charlier, J. Anderson, Characterising natural fires in large compartments – revisiting an early travelling fire test (BST/FRS 1993) with CFD, 15th International Interflam Conference, July 2019, London, UK, pp2111-2122.

Typical fire development pattern

• Initial ignition

Fire grew and spread to adjacent fuels slowly

Rapid develop

Fire developed rapidly towards the opening

Oxygen starvation

Once fully developed, combustion in middleto-rear was suppressed

Backwards spread

As fuel near opening was consumed, fire spread slowly towards rear of compartment

Typical fire development pattern

Observed in Test 2

Tomporature (°C) (b)

Toot 2 26 min

Tomporatura (°C)

Prototype structure

- 23m (L) \times 6m (W) \times 2.75m (H), Bay2 (8.0 m), Bay1 & Bay3 (7.5 m)
- Design load: $1.35 \times \text{dead} \text{ load}+1.5 \times \text{live} \text{ load} = 1.35 \times 4.11+1.5 \times 2.5 = 9.30 \text{ kN/m}^2$
- Load ratio: 0.7 (unfactored design loads $\gamma_G = 1$, $\gamma_Q = 1$)
- Slabs: Cofraplus 60
- Formulation of elements in LS-DYNA: Hughes-Liu (beam) & Belytschko-Lin-Tsay (slab)

Reinforcement Ø8 100 mm/100 mm 490 mm²/m 420 Mpa

Structural response

Under travelling fire Test 2

Test2 - Bay3

400

ZBeam10

ZBeam9

Slab8

1500

900

1200 😧

¢

Crib10

Vectors of Total-displacement

Opei End

(mm)

310-

279-

248-

217 -

Effect of ventilation conditions

On fire behaviour

- Test 2: 1/1 opening (fully opened)
- Test 3: 1/2 opening
- Test 5: 1/4 opening
- Test 6: 1/8 opening

Ventilation-controlled Fires

Fire behavior dependent on **oxygen availability**

As opening size decreases (\downarrow), fire duration increases (\uparrow).

Gas temperature (°C) ູບີ 1000 1000 Crib10 Crib10 GroupA GroupA 800 800 GroupB GroupB 600 600 400 400 Ga 200 200 50 150 50 100 100 150 Time (min) Time (min) W_{f} = 2.9396 *W*₊=3.2760 Test 5 Test 6 Crib2 GroupA 1200 1200 Crib2 Gas temperature (°C) 009 000 009 000 Crib6 Crib6 ပ္ 1000 Crib10 Crib10 ture GroupA 800 GroupB 600 Gas ter 400 200 200 50 150 200 150 200 250 300 350 400 450 100 0 50 100 Time (min) Time (min)

Crib2

Crib6

 $W_f = 1.4795$

In Test 6 (1/8 opening), the fire became severely oxygen-starved, leading to **incomplete combustion**, a significantly extended fire duration, and a drop in peak gas temperature.

Test 2

1200

 $W_f = (6/H)^{0.3} [0.62+90(0.4-a_v)^4/(1+b_va_h) \ge 0.5$

Test 3

1200

 $W_f = 2.3087$

--- Crib2

Crib6

Effect of ventilation conditions

On structural fire responses

Structural fire response pattern (Tests 2, 3, 5)

Fire developed rapidly towards the opening, causing structural elements in **BAY 3** (near the opening) to heat up first, leading to the **softening and bending** of steel members.

Due to **backward fire spread**, structural elements in **BAY 2 and BAY 1** heated up sequentially. As **opening size decreases (\downarrow), fire duration increases (\uparrow),** resulting in **larger deflection** due to the extended fire duration allowing more time for heat transfer.

Effect of ventilation conditions

Oxygen-starved fire & Incomplete combustion

Lower temperatures (<680°C) \rightarrow Less steel softening \rightarrow Limited bending

Extended fire duration \rightarrow Less non-uniform temperature distribution

Restrained conditions in middle bay \rightarrow Constrained expansion, leading to upward deformation rather than bending

Effect of fuel load density

On fire behaviour

- Test 2: 1/1 opening, fuel load density 20 kg/m²
- Test 1: 1/1 opening, fuel load density 40 kg/m²
- Test 3: 1/2 opening, fuel load density 20 kg/m²
- Test 4: 1/2 opening fuel load density 40 kg/m²

Ventilation-controlled Fires

IVERPOOL

TUDelft

As fuel load density (↑), longer burning duration (↑), higher peak gas temperatures (↑). Delayed backward spread (oxygen limitation slows down fire from spreading backward).

Maybe more incomplete combustion (leading to increased smoke and toxic gases).

Effect of fuel load density

On structural fire responses

Structural fire response pattern

Fire developed rapidly towards the opening, causing structural elements in **BAY 3** (near the opening) to heat up first, leading to the **softening and bending** of steel members.

Due to **backward fire spread**, structural elements in **BAY 2 and BAY 1** heated up sequentially. As **fuel load density (** \uparrow **)**, **longer burning duration (** \uparrow **)** & **higher peak gas temperatures (** \uparrow **)**, resulting in **larger deflection (** \uparrow **)**.

Effect of fuel load density

On structural fire responses Structural fire response (Test 4) Partial collapse in BAY3 (large deformation)

Compared to **Test 3**, the **fuel load density doubled** (from 20 kg/m² to 40 kg/m²) in Test 4. Compared to **Test 1**, the **opening size was reduced** to 1/2 in Test 4.

High fuel load and reduced ventilation together create severe localised heating, increasing structural collapse risk.

Conclusion

Effect of Ventilation:

- Smaller openings \rightarrow Longer fire duration \rightarrow Larger deflections due to extended heat exposure.
- Test 6 (extremely small opening) → Oxygen-starved fire → Lower temperatures (<680°C) → Less non-uniform heating → Limited bending, and upward deformation in BAY 2.

Effect of Fuel Load:

- Higher fuel load \rightarrow Longer burning, higher peak temperatures \rightarrow larger deflections.
- Test 4 (high fuel load + reduced ventilation) \rightarrow Prolonged localised heating \rightarrow Increased collapse risk.

Considering ventilation, fuel load, and structural layout together is crucial for identifying worst-case scenarios and preventing fire-induced collapses.

Structural response of steel-composite structures in under-ventilated travelling fires: numerical insights from the BST/FRS 1993 Fire Tests

Dr. Zhuojun Nan, Postdoc Civil Engineering & Geosciences Delft University of Technology

Email: Z.Nan@tudelft.nl

Dr. Xu Dai, Lecturer Structural Engineering University of Liverpool

Email: <u>xudai@liverpool.ac.uk</u>

Thank you.

