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Motivation Literature review Experimental programme | Test results Conclusions and next stages

Motivation 2
Aluminium

Production increased
between 2002-2022 [1]

25% is used in the
construction industry [2]

« (Good corrosion resistance

« Low density

* High strength-to-weight
ratio

« High specific modulus

« Good recyclability

Arvida bridge, Quebec, Canada [5]
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Motivation

Aluminium

Production increased
between 2002-2022 [1]

Design codes for fire
design

25% is used in the
construction industry [2]

EN 1999-1-1:
General rules (RT) [3]

Post-fire ?

« (Good corrosion resistance

« Low density

* High strength-to-weight
ratio

« High specific modulus

« Good recyclability

EN 1999-1-2:
Structural fire design [4]
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Multi-scale structural behaviour of aluminium alloys at sub-zero and
elevated temperatures

Stage 1 Stage 2 I Stage 3 Stage 4
Mechanical properties Microstructure Connections Structural level
Steady tests Transient tests SEM+EBSD
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Literature review

Post-fire tests 6

« To simulate the mechanical properties after a fire.

« Mechanical properties after exposure to high temperature and subsequent cooling by one or more
methods.

T (°C) s A
T Cooling methods T,
g T2
T,
S — Air - Watir
t (min) e
Variables: Usually used in literature: :
H h I
« Tg = Target temperature - T,=20-550°C ow do these variables

I | fires?
° H; = Heating rate ‘ * H;=15-20 °C/min relate to real fires
+ S, = Soaking time « §;= 15-30 min

* Cooling environment: Water, What is the effect on
air mechanical properties?
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Previous studies

Effect of cooling method on mechanical properties

60|61-T6 [9] 7075'T73.[9]
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Cooling methods show a minor effect
except for 7A04-T6 at 400°C
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Aluminium remains unaltered up to
200-300°C

\ 4

Strength recovery is observed in
some alloys
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Previous studies

Effect of heating rate on mechanical properties

AA5083-H116
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AA6061-T651
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Heating rate affects different alloys
differently, as reported by [14]

Higher heating rates produce a lower
reduction in proof strength
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Previous studies 9
Effect of the soaking time on mechanical properties

Research on the effect of soaking time on the post-fire mechanical properties of aluminium
appears to be limited

—@— Ferritic SS-T=600°C [15]
¢ - -4 ¢ ~& Lean duplex SS-T=600°C [16]
09l i R | | —@—EN1.4003-T=800°C [17]
T i . ~®-EN1.4003-T=900°C [17]
&------- RO IRy VS -4 —@— EN1.4003-T=1000°C [17]
o_,gg.\F ™ i — | |=® EN1.4016-T=900°C [17]
® e TEO W—— ¢ ~@ EN1.4016-T=1000°C [17]
2 -®
s0.7} i

Soaking time could affect the
post-fire reduction factors of steel
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Fire tests 10
1996 2010 2011 2012
I I I I
i | | i
Cardington [18] MOKRSKO [19] COSSFIRE [20] FICEB [21]
» Steel frames « Steel frames with « Steel frames « Steel frames
« Composite floors cellular beams « Composite floors with cellular
« Corner tests + « Composite floors « Emphasis on beams
large compartment connections » Composite floors
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Firetests _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ______ ; 11

I

2021 | 2021 2021 I 2022
I
I

NIST [22]
« Steel frames
« Composite floors

* Reticulated * Reticulated o Steel frames

I
[
Yin et al [23] Zhu et al [24] | TRAFIR [25]
[
aluminium roof aluminium roof I'l« Travelling fire scenario
[




Fire tests

—+— Aluminium structure —— Steel structure

+ MOKRSKO

: + TRAFIR

: + FICEB

: + CROOSFIRE

} = NHT test 1

+ Cardington

+ Zhu et al

=

+ Yin et al

+ Previous studies (AA)
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Temperature range

\ 4

Measured at members

\ 4

Max temperature observed for
FICEB and NHT (1053 and 1029°C)

A 4

Steel structures tipically reach higher
temperatures than aluminium

0

200

400 600 800 1000 1200
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Fire tests 13

—+— Aluminium structure —+— Steel structure

I I ]

: t MOKRSKO Heating rate (Ht)

+ TRAFIR ¥
Measured at members

: + FICEB

+——+ CROOSFIRE — _
Depends on fire load and openings

+—+ NHT test 1

\ 4

1 + Cardington Aluminium experiences higher heating
rates than steel (difference in thermal

: kZhu etal properties of materials)
: FYin et al
,’-\\ v
¢ » ¢ s » Previous studies (AA) e Ht>50°C/min only covered by one study
I | | l ~N="
0 50 100 150 200 250

Heating rate (°C/min)
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Fire tests

—+— Aluminium structure —— Steel structure

+ MOKRSKO

i + TRAFIR
+ + FICEB
: + CROOSFIRE
+ NHT test 1
+ Cardington
i + Zhu et al
1I0 2I0 3|0 4I0 5|0 6|0

Cooling rate (°C/min)

70

14

Cooling rate

\ 4

Measured at members

\ 4

Cooling rate usually range between
5-25°C/min except MOKRSKO

\ 4

There is a need to study the effect of a
wider range of cooling rates
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Fire tests 15
[ [ [ I
+ + MOKRSKO
Soaking time
+ —+ TRAFIR
+—— FICEB Time from T>200°C to the
start of the cooling process
; + CROOSFIRE
t + NHT test 1 Depends on fire load
i + Cardington Y
Longer exposure times are expected for
Ak P ok higher fire loads
+ Previous studies (AA)
0 20 40 60 80 100 120

Time (min)
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Aluminium alloy AA 6082-T6 Aluminium alloy AA 6082-T6
20, 100, 200, 300, 350, Temperature T 400°C
Temperature T

400, 450 and 500°C
Heating rate Ht  15°C/min

15, 80 and 135 °C/min

Heating rate Ht (St=20min, C=water quenching)

Soaking time St 20 min . 20, 60 and 120 min

R R R ——— Soaking time St Ht=15°C/min. C=wa hi
' Cooli Inside furnace and water ' _ _ _ _ _ _ _ _ _ _ _ _ _ (Ht=15°C/min, C=water quenching) _
, Cooling method C . | : . .
T quenching - Inside furnace, outside furnace and |
_____________________ 1 Cooling method C  water quenching (Ht=15°C/min, l
] St=20min) !

W=water
»| AF=Air inside furnace |«

A=Air outside furnace
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Sample cutting 18

Water-Jet cutting
Angle 50.8x50.8x1.6mm Cut into flat faces (Water-jet WardJet Series A-1212)
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Set-up 19

Type K
thermocouples'

- Samples
Furnace

Lenton UAF 14/10

Data acquisition system
o= Laptop
| Steel bucket



Set-up

Video extensometer
Instron AVE 2

Experimental programme

>niversal testing machine
Instron 68TM-50

20

> Clip extensometer
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Sample exposure 22

St=20min

—Water
— Air inside furnace

0 50 100 150 200
Time (min)
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Temperature vs time curves 23
T T J J 60 T T T 40
500 - / —— Water |
— Air inside furnace p=14.73°C/min| 5| p=3.15°C/min |
50+ o=5.73°C/min 0=2.85°C/min
400 1 COV=38.88% | 30 COV=90.38% -

40 1
300 -
30|

T (°C)

200 &
207

100‘ 10_

—
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1(|)0 1|50 260 0 10 20 30 40 O 5 10 15
Time (min) Heating rate (°C/min) Cooling rate (°C/min)
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Stress-strain curves 24

RT T=100°C T=200°C T=300°C T=350°C T=400°C T=450°C T=500°C

300 Cooling method = Water 300 Cooling method = Air inside furnace

250 1 | 1 250 /v\

200} 1 2001
Np""‘"'\.
=
£ 150 1150 |
Z
© |
100“ 100
50 | 1 50}
0 * L ' 0 ' . -
0 5 10 15 20 0 5 10 15 20
e (%) e (%)

Very little effect up to T=200°C
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Stress-strain curves 25

RT T=100°C T=200°C T=300°C T=350°C T=400°C T=450°C T=500°C

300 Cooling method = Water 300 Cooling method = Air inside furnace

250 \ 250—/v\
200 1 12007 1

e
E 150 1150 |
<
&)
100 1100
50 | 1 50}
0 * l - 0 ' ' '
0 5 10 15 20 0 5 10 15 20
e (%) e (%)

At 350°C, a significant decrease in strength is observed
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Stress-strain curves 26

RT T=100°C T=200°C T=300°C T=350°C T=400°C T=450°C T=500°C

Cooling method = Water Cooling method = Air inside furnace

300 300
250—l l“ ; 250—/T]\
200 | 1200}
N-"""‘\
E 1
E 150 - 1150
2 e \ ,
@)
100 - 100
50 150
0 * l - 0 ' ' '
0 5 10 15 20 0 5 10 15 20
e (%) e (%)

For the water cooling method, strength is lower at 400°C
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Stress-strain curves 27

RT T=100°C T=200°C T=300°C T=350°C T=400°C T=450°C T=500°C

Cooling method = Water Cooling method = Air inside furnace

300 300
250—l li\ 1 y 250—/-\_]\
200 1200
N-"'"H.
=
E 150 —_ | 150]
<
: |
100 1 100
50 1 50
0 ‘ ‘ ' 0 | | '
0 B 10 15 20 O 5] 10 15 20
e (%) € (%)
Cooling=water: a strength recovery is Cooling=air inside furnace: strength

observed at 450°C and 500°C recovery is not observed
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Stress-strain curves 28

RT T=100°C T=200°C T=300°C T=350°C T=400°C T=450°C T=500°C

Cooling method = Water Cooling method = Air inside furnace

300 300
250 lr iil . 250~/—T]\
2001 1 200
N-""""\.
&
2%150 ~ 11907
T i
100 | 1100
50 1 50
0 : : : 0 ' ' '
0 5 10 15 20 0 5 10 15 20
e (%) e (%)

An increase in ductility is observed for T=2350°C
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Reduction factors 29
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T=20-200°C: f; ,,, and f, remain unaltered T>300°C: significant loss of strength




Reduction factors
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1.8 g@
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T=300-500°C: ¢, ,,, decrease and ¢, increases,

resulting in increased ductility
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The increase in ductility is also observed
in terms of fracture strain (elongation)
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Effect of cooling method, soaking time and heating rate =

Effect of cooling method 400

v r
]\ —— -y
e
T

400

350

300

50 — Air furnace|
—— Air outside

0 50 100 150 200
Time (min)
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Effect of cooling method, soaking time and heating rate =

Effect of cooling method Effect of soaking time Effect of heating rate
4 400+ 1 400t rr—n_—ur//vvwwmn
/
1 350+ 1 350+
1 300+ 1 300+
1 250+ 1 250 T
1 200+ 1+ 200+
1 150 1 150
1 100+ 1 100+
—Woater —St=20 min ——Ht=15°C/min
50 —— Air furnace|(1 50 ——St=60 min |7 50 —— Ht=60°C/min
! —— Air outside ——St=120 min ———Ht=135°C/min
0 : 0 : : ' 0 : :

0 50 100 150 200 O 50 100 150 200 O 15 30 45 60
Time (min) Time (min) Time (min)
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Effect of cooling method, soaking time and heating rate =

Effect of cooling method

160

140 - o

120 +

—Water
20 | —— Air inside furnace
- Air outside furnace

0 10 20
€ (%)

A 13% decrease in ultimate strength for cooling=air inside furnace
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Effect of cooling method, soaking time and heating rate

Effect of cooling method Effect of soaking time

160 160
140 1 140 __\ :
120 - 1120 1
e 100 1 100
=
£ g0 80 '
=
© 60 60 |
40 140
——Water —St=20 min
20| ——— Air inside furnace 1 20} ——St=60 min
- Air outside furnace ——St=120 min
0 ‘ 0 '
0 10 20 0 10 20
€ (%) e (%)

A slight decrease in ultimate strength (4%) when St=60 and 120min
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Effect of cooling method, soaking time and heating rate

Effect of cooling method

160

140 |

—Water
20 | —— Air inside furnace
- Air outside furnace

0 10 20
€ (%)

160

1140 ¢

1120

1100 -

80 -

60

40

20 |

0

Effect of soaking time

q

—St=20 min
— St=60 min
= St=120 min

10
e (%)

160

1140

1120

1100 ¢

80

60

40

20 |

0

Effect of heating rate

—

= Hi=15%C/min
——Ht=80 °C/min
— Ht=135 °C/min

10 20
€ (%)

A slight increase (4%) in ultimate strength is
observed as the heating rate increases

A 23% decrease in ultimate strain is
observed as the heating rate increases
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Conclusions

Post-fire mechanical
properties of AAs

Effect of T°

fo.00, @and f, decreases for T>200°C

Ductility increases for T>300°C

38
—+— Aluminium structure —+— Steel structure
| | | | + MOKRSKO
; + TRAFIR
} + FICEB
; + CROOSFIRE
+ NHT test 1
+ Cardington
+ + Zhu et al
i t Yin et al
* Previous studies (AA)
| | : Ourlstudy | | |
0 200 400 600 800 1000 1200

T(°C)
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Conclusions

Post-fire mechanical
properties of AAs

Effect of cooling method

No significant effect for T<350°C

For T>400°C, water cooling method
produces higher reduction factors
(fo.00, @nd f,)

For T> 400°C, water cooling method
produces lower ductility

39

—+— Aluminium structure —+— Steel structure

I |

: + MOKRSKO
+—+ TRAFIR

+—+ FICEB
+——+ CROOSFIRE
++ NHT test 1

++ Cardington : :
Air outside furnace

+—+ Zhu et al

o Previous studies (AA) l

e Our study (AA)
e -

0 50 100 150 200 250 300
Cooling rate (°C/min)

Air inside furnace
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Conclusions 40
4 + MOKRSKO
Post-fire mechanical
properties of AAs + + TRAFIR

‘ +——+ FICEB
Effect of soaking time

+ CROOSFIRE

+ NHT test 1

} + Cardington

Soaking time has minor effect on
mechanical properties ++ Zhu et al

+ Previous studies (AA)

} + Our study

0 50 100 150
Time (min)
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Conclusions

Post-fire mechanical
properties of AAs

l

Effect of heating rate

Heating rate has a minor effect on
ultimate strength

A decrease in ductility is observed as
heating rate increases

—4+— Aluminium structure —— Steel structure

41

: + MOKRSKO
+ TRAFIR

] +FICEB
+——+ CROOSFIRE
+—+ NHT test 1
} + Cardington
t +Zhu et al
4 FYin et al

» e 9e» Previous studies (AA)

—
B L s——
T+

Our study

|

0 50 100 150 200
Heating rate (°C/min)

250




Experimental programme | Test results Conclusions and next stages

Next stages 42
Stage 1 : Stage 2 I Stage 3 Stage 4
Mechanical properties Microstructure Connections Structural level
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